On the Sperner property for the absolute order on complex reflection groups
Algebraic Combinatorics, Tome 3 (2020) no. 3, pp. 791-800.

Voir la notice de l'article provenant de la source Numdam

Two partial orders on a reflection group W, the codimension order and the prefix order, are together called the absolute order Abs(W) when they agree. We show that in this case the absolute order on a complex reflection group has the strong Sperner property, except possibly for the Coxeter group of type Dn, for which this property is conjectural. The Sperner property had previously been established for the noncrossing partition lattice NCW [, ], a certain maximal interval in Abs(W), but not for the entire poset, except in the case of the symmetric group []. We also show that neither the codimension order nor the prefix order has the Sperner property for general complex reflection groups.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.114
Classification : 20F55, 06A11, 06A07
Mots-clés : Absolute order, Sperner property, antichain, normalized flow, reflection group.

Gaetz, Christian 1 ; Gao, Yibo 1

1 Department of Mathematics Massachusetts Institute of Technology Cambridge, MA USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2020__3_3_791_0,
     author = {Gaetz, Christian and Gao, Yibo},
     title = {On the {Sperner} property for the absolute order on complex reflection groups},
     journal = {Algebraic Combinatorics},
     pages = {791--800},
     publisher = {MathOA foundation},
     volume = {3},
     number = {3},
     year = {2020},
     doi = {10.5802/alco.114},
     mrnumber = {4113607},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.114/}
}
TY  - JOUR
AU  - Gaetz, Christian
AU  - Gao, Yibo
TI  - On the Sperner property for the absolute order on complex reflection groups
JO  - Algebraic Combinatorics
PY  - 2020
SP  - 791
EP  - 800
VL  - 3
IS  - 3
PB  - MathOA foundation
UR  - https://geodesic-test.mathdoc.fr/articles/10.5802/alco.114/
DO  - 10.5802/alco.114
LA  - en
ID  - ALCO_2020__3_3_791_0
ER  - 
%0 Journal Article
%A Gaetz, Christian
%A Gao, Yibo
%T On the Sperner property for the absolute order on complex reflection groups
%J Algebraic Combinatorics
%D 2020
%P 791-800
%V 3
%N 3
%I MathOA foundation
%U https://geodesic-test.mathdoc.fr/articles/10.5802/alco.114/
%R 10.5802/alco.114
%G en
%F ALCO_2020__3_3_791_0
Gaetz, Christian; Gao, Yibo. On the Sperner property for the absolute order on complex reflection groups. Algebraic Combinatorics, Tome 3 (2020) no. 3, pp. 791-800. doi : 10.5802/alco.114. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.114/

[1] Armstrong, Drew Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc., Volume 202 (2009) no. 949, p. x+159 | Zbl | MR | DOI

[2] Brady, Thomas; Watt, Colum K(π,1)’s for Artin groups of finite type, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), Volume 94 (2002), pp. 225-250 | Zbl | MR | DOI

[3] Carter, Roger W. Conjugacy classes in the Weyl group, Compositio Math., Volume 25 (1972), pp. 1-59 | mathdoc-id | Zbl | MR

[4] Engel, Konrad Sperner theory, Encyclopedia of Mathematics and its Applications, 65, Cambridge University Press, Cambridge, 1997, x+417 pages | Zbl | MR | DOI

[5] Foster-Greenwood, Briana Comparing codimension and absolute length in complex reflection groups, Comm. Algebra, Volume 42 (2014) no. 10, pp. 4350-4365 | Zbl | MR | DOI

[6] Gaetz, Christian; Gao, Yibo A combinatorial 𝔰𝔩2-action and the Sperner property for the weak order, Proc. Amer. Math. Soc., Volume 148 (2020) no. 1, pp. 1-7 | Zbl | MR | DOI

[7] Harper, Lawrence H. The morphology of partially ordered sets, J. Combinatorial Theory Ser. A, Volume 17 (1974), pp. 44-58 | Zbl | MR | DOI

[8] Harper, Lawrence H.; Kim, Gene B. Is the Symmetric Group Sperner? (2019) (https://arxiv.org/abs/1901.00197)

[9] Harper, Lawrence H.; Kim, Gene B.; Livesay, Neal The Absolute Orders on the Coxeter Groups An and Bn are Sperner (2019) (https://arxiv.org/abs/1902.08334)

[10] Huang, Jia; Lewis, Joel Brewster; Reiner, Victor Absolute order in general linear groups, J. Lond. Math. Soc. (2), Volume 95 (2017) no. 1, pp. 223-247 | Zbl | MR | DOI

[11] Mühle, Henri Symmetric decompositions and the strong Sperner property for noncrossing partition lattices, J. Algebraic Combin., Volume 45 (2017) no. 3, pp. 745-775 | Zbl | MR | DOI

[12] Proctor, Robert A.; Saks, Michael E.; Sturtevant, Dean G. Product partial orders with the Sperner property, Discrete Math., Volume 30 (1980) no. 2, pp. 173-180 | Zbl | MR | DOI

[13] Reiner, Victor Non-crossing partitions for classical reflection groups, Discrete Math., Volume 177 (1997) no. 1-3, pp. 195-222 | Zbl | MR | DOI

[14] Shephard, Geoffrey C.; Todd, J. A. Finite unitary reflection groups, Canadian J. Math., Volume 6 (1954), pp. 274-304 | Zbl | MR | DOI

[15] Shi, Jian-yi Formula for the reflection length of elements in the group G(m,p,n), J. Algebra, Volume 316 (2007) no. 1, pp. 284-296 | Zbl | MR | DOI

[16] Solomon, Louis Invariants of finite reflection groups, Nagoya Math. J., Volume 22 (1963), pp. 57-64 | DOI | Zbl | MR

[17] Stanley, Richard P. Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods, Volume 1 (1980) no. 2, pp. 168-184 | Zbl | MR | DOI

[18] The Sage Developers SageMath, the Sage Mathematics Software System (Version 8.9), 2019 (http://www.sagemath.org/)

Cité par Sources :