Voir la notice de l'article provenant de la source Numdam
We study the (complex) Hecke algebra
Huang, Jia 1
@article{ALCO_2020__3_3_667_0, author = {Huang, Jia}, title = {Hecke algebras of simply-laced type with independent parameters}, journal = {Algebraic Combinatorics}, pages = {667--691}, publisher = {MathOA foundation}, volume = {3}, number = {3}, year = {2020}, doi = {10.5802/alco.108}, zbl = {1453.20009}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.108/} }
TY - JOUR AU - Huang, Jia TI - Hecke algebras of simply-laced type with independent parameters JO - Algebraic Combinatorics PY - 2020 SP - 667 EP - 691 VL - 3 IS - 3 PB - MathOA foundation UR - https://geodesic-test.mathdoc.fr/articles/10.5802/alco.108/ DO - 10.5802/alco.108 LA - en ID - ALCO_2020__3_3_667_0 ER -
Huang, Jia. Hecke algebras of simply-laced type with independent parameters. Algebraic Combinatorics, Tome 3 (2020) no. 3, pp. 667-691. doi : 10.5802/alco.108. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.108/
[1] A construction of Coxeter group representations. II, J. Algebra, Volume 306 (2006) no. 1, pp. 208-226 | Zbl | MR | DOI
[2] A unified construction of Coxeter group representations, Adv. Appl. Math., Volume 37 (2006) no. 1, pp. 31-67 | Zbl | MR | DOI
[3] Algebraic structures on Grothendieck groups of a tower of algebras, J. Algebra, Volume 321 (2009) no. 8, pp. 2068-2084 | Zbl | MR | DOI
[4] Combinatorics of Coxeter groups, Grad. Texts Math., 231, Springer, New York, 2005, xiv+363 pages | Zbl | MR
[5] Generalized quotients in Coxeter groups, Trans. Am. Math. Soc., Volume 308 (1988) no. 1, pp. 1-37 | Zbl | MR | DOI
[6] Methods of representation theory. Vol. I, John Wiley & Sons, Inc., New York, 1981, xxi+819 pages (With applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication) | Zbl | MR
[7] On the representation theory of finite
[8] Representations of Hecke algebras of general linear groups, Proc. Lond. Math. Soc., III. Ser., Volume 52 (1986) no. 1, pp. 20-52 | Zbl | MR | DOI
[9] Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Int. J. Algebra Comput., Volume 12 (2002) no. 5, pp. 671-717 | Zbl | MR | DOI
[10] Introduction to representation theory, Stud. Math. Libr., 59, American Mathematical Society, Providence, RI, 2011, viii+228 pages (With historical interludes by Slava Gerovitch) | Zbl | MR | DOI
[11] Representations of Hecke algebras at roots of unity, Algebr. Appl., 15, Springer-Verlag London, Ltd., London, 2011, xii+401 pages | Zbl | MR | DOI
[12] Iwahori-Hecke algebras of type
[13] Hopf algebras in Combinatorics (2014) (https://arxiv.org/abs/1409.8356)
[14] 0-Hecke algebra actions on coinvariants and flags, J. Algebr. Comb., Volume 40 (2014) no. 1, pp. 245-278 | Zbl | MR | DOI
[15] 0-Hecke algebra action on the Stanley–Reisner ring of the Boolean algebra, Ann. Comb., Volume 19 (2015) no. 2, pp. 293-323 | Zbl | MR | DOI
[16] Hecke algebras with independent parameters, J. Algebr. Comb., Volume 43 (2016) no. 3, pp. 521-551 | Zbl | MR | DOI
[17] A tableau approach to the representation theory of 0-Hecke algebras, Ann. Comb., Volume 20 (2016) no. 4, pp. 831-868 | Zbl | MR | DOI
[18] A uniform generalization of some combinatorial Hopf algebras, Algebr. Represent. Theory, Volume 20 (2017) no. 2, pp. 379-431 | Zbl | MR | DOI
[19] Reflection groups and Coxeter groups, Camb. Stud. Adv. Math., 29, Cambridge University Press, Cambridge, 1990, xii+204 pages | Zbl | MR | DOI
[20] The decomposition of 0-Hecke modules associated to quasisymmetric Schur functions, Algebr. Comb., Volume 2 (2019) no. 5, pp. 735-751 | Zbl | MR | DOI
[21] Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at
[22] The natural quiver of an Artinian algebra, Algebr. Represent. Theory, Volume 13 (2010) no. 5, pp. 623-636 | Zbl | MR | DOI
[23] On a theorem of Benson and Curtis, J. Algebra, Volume 71 (1981) no. 2, pp. 490-498 | Zbl | MR | DOI
[24] Hecke algebras with unequal parameters, CRM Monogr. Ser., 18, American Mathematical Society, Providence, RI, 2003, vi+136 pages | Zbl | MR
[25]
[26] Elements of the representation theory of associative algebras. Vol. 3, Lond. Math. Soc. Stud. Texts, 72, Cambridge University Press, Cambridge, 2007, xii+456 pages (Representation-infinite tilted algebras) | Zbl | MR
[27] The on-line encyclopedia of integer sequences, Notices Am. Math. Soc., Volume 65 (2018) no. 9, pp. 1062-1074 | Zbl | MR
[28] A decomposition of the group algebra of a finite Coxeter group, J. Algebra, Volume 9 (1968), pp. 220-239 | MR | DOI
[29] Representation theory of finite monoids, Universitext, Springer, Cham, 2016, xxiv+317 pages | Zbl | MR | DOI
[30] A short derivation of the Möbius function for the Bruhat order, J. Algebr. Comb., Volume 25 (2007) no. 2, pp. 141-148 | Zbl | MR | DOI
[31] Modules of the 0-Hecke algebra and quasisymmetric Schur functions, Adv. Math., Volume 285 (2015), pp. 1025-1065 | Zbl | MR | DOI
[32] Permuted composition tableaux, 0-Hecke algebra and labeled binary trees, J. Comb. Theory, Ser. A, Volume 161 (2019), pp. 420-452 | Zbl | MR | DOI
Cité par Sources :