Voir la notice de l'article dans Numdam
On explore ici le rapport entre la théorie des catastrophes de Thom et la théorie Hamilton-Jacobi des équations différentielles de premier ordre. La représentation des solutions d’une équation aux dérivées partielles du premier ordre comme variétés lagrangiennes permet d’étudier la structure locale de leurs singularités. La structure des singularités génériques est près du concept de Thom de catastrophe élémentaire associée à une singularité. On discute trois notions de la stabilité d’une singularité.
This paper outlines the manner in which Thom’s theory of catastrophes fits into the Hamilton-Jacobi theory of partial differential equations. The representation of solutions of a first order partial differential equation as lagrangian manifolds allows one to study the local structure of their singularities. The structure of generic singularities is closely related to Thom’s concept of the elementary catastrophe associated to a singularity. Three concepts of the stability of a singularity are discussed.
@article{AIF_1973__23_2_31_0, author = {Guckenheimer, John}, title = {Catastrophes and partial differential equations}, journal = {Annales de l'Institut Fourier}, pages = {31--59}, publisher = {Imprimerie Durand}, address = {28 - Luisant}, volume = {23}, number = {2}, year = {1973}, doi = {10.5802/aif.455}, zbl = {0271.35006}, mrnumber = {51 #1879}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/aif.455/} }
TY - JOUR AU - Guckenheimer, John TI - Catastrophes and partial differential equations JO - Annales de l'Institut Fourier PY - 1973 SP - 31 EP - 59 VL - 23 IS - 2 PB - Imprimerie Durand PP - 28 - Luisant UR - https://geodesic-test.mathdoc.fr/articles/10.5802/aif.455/ DO - 10.5802/aif.455 LA - en ID - AIF_1973__23_2_31_0 ER -
Guckenheimer, John. Catastrophes and partial differential equations. Annales de l'Institut Fourier, Tome 23 (1973) no. 2, pp. 31-59. doi : 10.5802/aif.455. https://geodesic-test.mathdoc.fr/articles/10.5802/aif.455/
Cité par Sources :