Smooth foliations on homogeneous compact Kähler manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 1, pp. 141-159.

Voir la notice de l'article dans Numdam

Nous étudions les feuilletages lisses de codimension arbitraire sur les variétés kähleriennes compactes homogènes. Nous montrons que les feuilletages lisses sur les variétés kähleriennes compactes homogènes rationnelles coïncident avec les fibrations localement triviales et nous classifions les feuilletages lisses dont toutes les feuilles sont analytiquement denses sur les variétés kähleriennes compactes homogènes. Les deux résultats sont basés sur un théorème de structure grossière pour les feuilletages lisses sur les variétés kähleriennes compactes homogènes obtenu par comparaison du feuilletage avec la décomposition de Borel-Remmert de l’espace ambiant.

We study smooth foliations of arbitrary codimension on homogeneous compact Kähler manifolds. We prove that smooth foliations on rational compact homogeneous manifolds are locally trivial fibrations and classify the smooth foliations with all leaves analytically dense on compact homogeneous Kähler manifolds. Both results are built upon a (rough) structure Theorem for smooth foliations on compact homogeneous Kähler manifolds obtained by comparison of the foliation with the Borel-Remmert decomposition of the ambient space.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1489

Lo Bianco, Federico 1 ; Pereira, Jorge Vitório 2

1 I.R.M.A.R., Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
2 IMPA, Estrada Dona Castorina, 110, Horto, Rio de Janeiro, Brasil
@article{AFST_2016_6_25_1_141_0,
     author = {Lo Bianco, Federico and Pereira, Jorge Vit\'orio},
     title = {Smooth foliations on homogeneous compact {K\"ahler} manifolds},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {141--159},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 25},
     number = {1},
     year = {2016},
     doi = {10.5802/afst.1489},
     zbl = {1336.53041},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1489/}
}
TY  - JOUR
AU  - Lo Bianco, Federico
AU  - Pereira, Jorge Vitório
TI  - Smooth foliations on homogeneous compact Kähler manifolds
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2016
SP  - 141
EP  - 159
VL  - 25
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1489/
DO  - 10.5802/afst.1489
LA  - en
ID  - AFST_2016_6_25_1_141_0
ER  - 
%0 Journal Article
%A Lo Bianco, Federico
%A Pereira, Jorge Vitório
%T Smooth foliations on homogeneous compact Kähler manifolds
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2016
%P 141-159
%V 25
%N 1
%I Université Paul Sabatier, Toulouse
%U https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1489/
%R 10.5802/afst.1489
%G en
%F AFST_2016_6_25_1_141_0
Lo Bianco, Federico; Pereira, Jorge Vitório. Smooth foliations on homogeneous compact Kähler manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 1, pp. 141-159. doi : 10.5802/afst.1489. https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1489/

Cité par Sources :