Voir la notice de l'article provenant de la source Numdam
Let
En 1984, L. Mahé, et indépendammant G. Efroymson, ont prouvé le cas où
@article{AFST_2010_6_19_S1_37_0, author = {Delzell, Charles N.}, title = {Extension of the {Two-Variable} {Pierce-Birkhoff} conjecture to generalized polynomials}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {37--56}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {S1}, year = {2010}, doi = {10.5802/afst.1274}, mrnumber = {2675720}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1274/} }
TY - JOUR AU - Delzell, Charles N. TI - Extension of the Two-Variable Pierce-Birkhoff conjecture to generalized polynomials JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 37 EP - 56 VL - 19 IS - S1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1274/ DO - 10.5802/afst.1274 LA - en ID - AFST_2010_6_19_S1_37_0 ER -
%0 Journal Article %A Delzell, Charles N. %T Extension of the Two-Variable Pierce-Birkhoff conjecture to generalized polynomials %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 37-56 %V 19 %N S1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1274/ %R 10.5802/afst.1274 %G en %F AFST_2010_6_19_S1_37_0
Delzell, Charles N. Extension of the Two-Variable Pierce-Birkhoff conjecture to generalized polynomials. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro spécial : Actes de la Conférence sur les anneaux ordonnés en honneur de Melvin Henriksen, Université d’état de Louisiane à Bâton Rouge, 2007, Tome 19 (2010) no. S1, pp. 37-56. doi : 10.5802/afst.1274. https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1274/
[Birkhoff, et al., 1956] G. Birkhoff and R.S. Pierce, Lattice ordered rings, Anais Acad. Bras. Ci. 28 (1956), 41–69; Math. Reviews 18, 191. | Zbl | MR
[Delzell, 1989] C. Delzell, On the Pierce-Birkhoff conjecture over ordered fields, Rocky Mountain J. Math. 19(3) (Summer 1989), 651–68. | Zbl | MR
[Delzell, 1990] C. Delzell, Suprema of infima of rational functions, Abstracts of Papers Presented to the Amer. Math. Soc. 11, Number 4, Issue 70 (August 1990), #858-14-80, p. 337.
[Delzell, 2005] C. Delzell, “Suprema of infima of generalized rational functions,” Abstract of a talk presented in: “Workshop: Real algebra, quadratic forms and model theory; algorithms and applications, November 2–9, 2005,” held during and as part of the Special Trimester on Real Geometry (September–December 2005), Centre Emile Borel, Institut Henri Poincaré, Paris. (Abstract published in the Workshop program: http://perso.univ-rennes1.fr/michel.coste/Borel/w1prog.html; see also http://www.ihp.jussieu.fr/ceb/Trimestres/T05-3/C1/index.html.)
[Delzell, 2008] C. Delzell, Impossibility of extending Pólya’s theorem to “forms” with arbitrary real exponents, J. Pure Appl. Algebra 212 (2008), 2612–22. | Zbl | MR
[Dries, 1998] L. van den Dries, Tame Topolgy and O-minimal Structures, London Math. Soc. Lect. Note Series, vol. 248, Cambridge Univ. Press, 1998. | Zbl | MR
[Hager, et al., 2010] A.W. Hager and D.G. Johnson, Some comments and examples on generation of (hyper-)archimedean
[Henriksen, et al., 1962] M. Henriksen and J.-R. Isbell, Lattice ordered rings and function rings, Pacific J. Math. 12 (1962), 533–66. | Zbl | MR
[Madden, 1989] J. Madden, Pierce-Birkhoff rings, Archiv der Math.
[Mahé, 1984] L. Mahé, On the Pierce-Birkhoff conjecture, Rocky Mountain J. Math. 14 (1984), 983–5. | Zbl | MR
[Miller, 1994] Chris Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic 68 (1994), 79–94. | Zbl | MR
[Ruiz, 1993] Jesús Ruiz, The Basic Theory of Power Series, Advanced Lectures in Mathematics, Vieweg, 1003. | MR
[Sturm, 1829] C. Sturm, “Extrait d’un Mémoire de M. Sturm, presenté à l’Académie des sciences, dans un séance du I
Cité par Sources :