Voir la notice de l'article provenant de la source Numdam
We study some properties of the polar curve
On étudie dans cet article quelques propriétés de la courbe polaire
@article{AFST_2010_6_19_3-4_849_0, author = {Mol, Rog\'erio S.}, title = {The polar curve of a foliation on $\mathbb{P}^2$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {849--863}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {3-4}, year = {2010}, doi = {10.5802/afst.1268}, zbl = {1254.53050}, mrnumber = {2790820}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1268/} }
TY - JOUR AU - Mol, Rogério S. TI - The polar curve of a foliation on $\mathbb{P}^2$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 849 EP - 863 VL - 19 IS - 3-4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1268/ DO - 10.5802/afst.1268 LA - en ID - AFST_2010_6_19_3-4_849_0 ER -
%0 Journal Article %A Mol, Rogério S. %T The polar curve of a foliation on $\mathbb{P}^2$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 849-863 %V 19 %N 3-4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1268/ %R 10.5802/afst.1268 %G en %F AFST_2010_6_19_3-4_849_0
Mol, Rogério S. The polar curve of a foliation on $\mathbb{P}^2$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 19 (2010) no. 3-4, pp. 849-863. doi : 10.5802/afst.1268. https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1268/
[1] Bodin (A.), Débes (P.), and Najib (S.).— Irreducibility of hypersurfaces. Comm. Algebra, 37(6):1884-1900, (2009). | Zbl | MR
[2] Brieskorn (E.) and Knörrer (H.).— Plane algebraic curves. Birkhäuser Verlag, Basel, (1986). | Zbl | MR
[3] Camacho (C.), Lins Neto (A.), and Sad (P.).— Topological invariants and equidesingularization for holomorphic vector fields. J. Differential Geom., 20(1):143-174, (1984). | Zbl | MR
[4] Campillo (A.) and Olivares (J.).— Polarity with respect to a foliation and Cayley- Bacharach theorems. J. Reine Angew. Math., 534:95-118, (2001). | Zbl | MR
[5] Corral (N.).— Sur la topologie des courbes polaires de certains feuilletages singuliers. Ann. Inst. Fourier (Grenoble), 53(3):787-814, (2003). | Zbl | MR | mathdoc-id
[6] Corral (N.).— Infinitesimal adjunction and polar curves. Bull. Braz. Math. Soc. (N.S.), 40(2):181-224, (2009). | Zbl | MR
[7] Corral (N.).— Polar pencil of curves and foliations. Astérisque, (323):161-179, (2009). | MR
[8] Gómez-Mont (X.), Seade (J.), and Verjovsky (A.).— The index of a holomorphic ow with an isolated singularity. Math. Ann., 291(4):737-751, (1991). | Zbl | MR
[9] Griffiths (P.) and Harris (J.).— Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons Inc., New York, (1994). | Zbl | MR
[10] Mol (R.S.).— Classes polaires associées aux distributions holomorphes de sous-espaces tangents. Bull. Braz. Math. Soc. (N.S.), 37(1):29-48, (2006). | Zbl | MR
[11] Schinzel (A.).— Polynomials with special regard to reducibility, volume 77 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, (2000). | Zbl | MR
[12] Wall (C.T.C.).— Singular points of plane curves, volume 63 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, (2004). | Zbl | MR
Cité par Sources :