Voir la notice de l'article provenant de la source Numdam
The concepts of tropical semiring and tropical hypersurface, are extended to the case of an arbitrary ordered group. Then, we define the tropicalization of a polynomial with coefficients in a Krull-valued field. After a close study of the properties of the operator “tropicalization" we conclude with an extension of Kapranov’s theorem to algebraically closed fields together with a valuation over an ordered group.
Les concepts de « semi-anneau » et d’« hypersurface tropicale » sont étendus au cas des groupes ordonnés quelconques. Ensuite, nous definissons la « tropicalisation » d’un polynôme à coefficients dans un corps valué. Après une étude détaillée de l’opérateur de tropicalisation, nous donnons une généralisation du théorème de Kapranov aux corps algébriquement clos munis d’une valuation à valeurs dans un groupe ordonné.
@article{AFST_2010_6_19_3-4_525_0, author = {Aroca, Fuensanta}, title = {Krull-Tropical {Hypersurfaces}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {525--538}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {3-4}, year = {2010}, doi = {10.5802/afst.1255}, zbl = {1223.14069}, mrnumber = {2790807}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1255/} }
TY - JOUR AU - Aroca, Fuensanta TI - Krull-Tropical Hypersurfaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 525 EP - 538 VL - 19 IS - 3-4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1255/ DO - 10.5802/afst.1255 LA - en ID - AFST_2010_6_19_3-4_525_0 ER -
%0 Journal Article %A Aroca, Fuensanta %T Krull-Tropical Hypersurfaces %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 525-538 %V 19 %N 3-4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1255/ %R 10.5802/afst.1255 %G en %F AFST_2010_6_19_3-4_525_0
Aroca, Fuensanta. Krull-Tropical Hypersurfaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 19 (2010) no. 3-4, pp. 525-538. doi : 10.5802/afst.1255. https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1255/
[1] Aroca (F.).— Tropical geometry for fields with a krull valuation: First defiintions and a small result. Boletin de la SMM, 3a Serie Volumen 16 Numero 1 (2010).
[2] Einsiedler (M.), Kapranov (M.), and Lind (D.).— Non-Archimedean amoebas and tropical varieties. J. Reine Angew. Math., 601:139-157 (2006). arXiv:math.AG/0408311v2. | Zbl | MR
[3] Eisenbud (D.).— Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, (1995). With a view toward algebraic geometry. | Zbl | MR
[4] Gathmann (A.).— Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein., 108(1):3-32 (2006). arXiv:math.AG/0601322v1". | Zbl | MR
[5] Itenberg (I.), Mikhalkin (G.), and Shustin (E.).— Tropical algebraic geometry, volume 35 of Oberwolfach Seminars. Birkhäuser Verlag, Basel (2007). | Zbl | MR
[6] Katz (E.).— A tropical toolkit. Expositiones Mathematicae, 27(1):1-36 (2009). arXiv:math/0610878. | Zbl | MR
[7] Krull (W.).— Allgemeine bewertungstheorie. J. Reine Angew. Math., 167:160-197 (1932). | Zbl
[8] Ribenboim (P.).— The theory of classical valuations. Springer Monographs in Mathematics. Springer-Verlag, New York (1999). | Zbl | MR
[9] Richter-Gebert (J.), Sturmfels (B.), and Theobald (T.).— First steps in tropical geometry. In Idempotent mathematics and mathematical physics, volume 377 of Contemp. Math., pages 289-317. Amer. Math. Soc., Providence, RI, (2005). arXiv:math.AG/0306366. | Zbl | MR
[10] Shafarevich (I. R.).— Basic algebraic geometry. 1. Springer-Verlag, Berlin, second edition, (1994). Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid. | Zbl | MR
[11] Spivakovsky (M.).— Valuations in function fields of surfaces. Amer. J. Math., 112(1):107-156 (1990). | Zbl | MR
[12] Zariski (O.) and Samuel (P.).— Commutative algebra. Vol. II. Springer-Verlag, New York, (1975). Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29. | Zbl | MR
Cité par 5 documents. Sources : zbMATH