Voir la notice de l'article provenant de la source Numdam
We prove that one can obtain natural bundles of Lie algebras on rank two
Nous prouvons que on peut obtenir fibrés naturels des algèbres de Lie
@article{AFST_2010_6_19_2_419_0, author = {Gaiffi, Giovanni and Grassi, Michele}, title = {Lie {Algebra} bundles on {s-K\"ahler} manifolds, with applications to {Abelian} varieties}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {419--451}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {2}, year = {2010}, doi = {10.5802/afst.1249}, zbl = {1206.53031}, mrnumber = {2674769}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1249/} }
TY - JOUR AU - Gaiffi, Giovanni AU - Grassi, Michele TI - Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 419 EP - 451 VL - 19 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1249/ DO - 10.5802/afst.1249 LA - en ID - AFST_2010_6_19_2_419_0 ER -
%0 Journal Article %A Gaiffi, Giovanni %A Grassi, Michele %T Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 419-451 %V 19 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1249/ %R 10.5802/afst.1249 %G en %F AFST_2010_6_19_2_419_0
Gaiffi, Giovanni; Grassi, Michele. Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 19 (2010) no. 2, pp. 419-451. doi : 10.5802/afst.1249. https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1249/
[BMP] U. Bruzzo, G. Marelli, F. Pioli A Fourier transform for sheaves on real tori Part II. Relative theory J. of Geometry and Phy. 41 (2002) 312-329 | Zbl | MR
[CDGP] P. Candelas, X.C. De la Ossa, P.S. Green, L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B359 (1991), p 21-74 | Zbl | MR
[DOPW] R. Donagi, B.A. Ovrut, T. Pantev, D. Waldram Standard-model bundles, Adv. Ther. Math. Phys. 5 (2001) n.3, p. 563-615 | Zbl | MR
[GG1] G. Gaiffi, M. Grassi A geometric realization of
[GG2] G. Gaiffi, M. Grassi A natural Lie superalgebra bundle on rank three WSD manifolds, J. Geom. Phys. 59 (2009), p. 207-220 | Zbl | MR
[G1] M. Grassi, Polysymplectic spaces,
[G2] M. Grassi, Mirror symmetry and self-dual manifolds, math.DG/0202016 (2002)
[G3] M. Grassi, Self-dual manifolds and mirror symmetry for the quintic threefold, Asian J. Math 9 (2005) 79-102 | Zbl | MR
[GH] P. Griffiths, J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, New York (1978) | Zbl | MR
[Gr] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser P.M. 152, Boston 1999 | Zbl | MR
[Gu] V. Guillemin, Moment maps and combinatorial invariants of Hamiltonian
[HT] T. Hausel, M. Thaddeus Mirror symmetry, Langlands duality, and the Hitchin system Invent. Math. 153 (2003), n.1 197-229 | Zbl | MR
[LM] H.B. Lawson, M-L. Michelsohn, Spin Geometry, Princeton M.S. 38 (1989) | Zbl
[M] A. McInroy, Orbifold mirror symmetry for complex tori, preprint | MR
[KS] M. Kontsevich, Y. Soibelman, Homological mirror symmetry and torus fibrations, math.SG/0011041 (2001) | Zbl | MR
[SYZ] A. Strominger, S.T. Yau, E. Zaslow, Mirror Symmetry is T-Duality, Nucl. Phys. B479 (1996) 243-259; hep-th/9606040 | Zbl | MR
[V1] M.S. Verbitsky, Action of the Lie algebra of
[V2] M.S. Verbitsky, Hyperholomorphic bundles over a hyper-Kähler manifold J. Algebraic Geom. 5 (1996), no. 4, 633–669 | Zbl | MR
Cité par Sources :