Voir la notice de l'article provenant de la source Numdam
In this paper we describe the orbit structure of
Nous décrivons la structure des orbites des actions de class
@article{AFST_2008_6_17_3_613_0, author = {Maquera, C. and Martins, L. F.}, title = {Orbit {Structure} of certain ${\mathbb{R}}^{2}$-actions on solid torus}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {613--633}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 17}, number = {3}, year = {2008}, doi = {10.5802/afst.1195}, zbl = {1170.57029}, mrnumber = {2488234}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1195/} }
TY - JOUR AU - Maquera, C. AU - Martins, L. F. TI - Orbit Structure of certain ${\mathbb{R}}^{2}$-actions on solid torus JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2008 SP - 613 EP - 633 VL - 17 IS - 3 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1195/ DO - 10.5802/afst.1195 LA - en ID - AFST_2008_6_17_3_613_0 ER -
%0 Journal Article %A Maquera, C. %A Martins, L. F. %T Orbit Structure of certain ${\mathbb{R}}^{2}$-actions on solid torus %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2008 %P 613-633 %V 17 %N 3 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1195/ %R 10.5802/afst.1195 %G en %F AFST_2008_6_17_3_613_0
Maquera, C.; Martins, L. F. Orbit Structure of certain ${\mathbb{R}}^{2}$-actions on solid torus. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 17 (2008) no. 3, pp. 613-633. doi : 10.5802/afst.1195. https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1195/
[1] Arraut (J. L.), Craizer (M.).— Foliations of
[2] Arraut (J. L.), Maquera (C. A.).— On the orbit structure of
[3] Camacho (C.), Lins Neto (A.).— Geometric Theory of Foliations. Birkhäuser, Boston, Massachusetts, 1985. | Zbl | MR
[4] Camacho (C.), Scárdua (B. A.).— On codimension one foliations with Morse singularities on three-manifolds. Topology Appl., 154, p. 1032-1040 (2007). | Zbl | MR
[5] Cearveau (D.).— Distributions involutives singulières. Ann. Inst. Fourier, 29, no.3, 261-294 (1979). | Zbl | MR | mathdoc-id
[6] Chatelet (G.), Rosenberg (H.), Weil (D.).— A classification of the topological types of
[7] Haefliger (A.).— Variétés feuilletées. Ann. Scuola Norm. Sup. Pisa, Série 3, 16, p. 367-397 (1962). | Zbl | MR | mathdoc-id
[8] Katok (A.), Hasselblatt (B.).— Introduction to the modern theory of dynamical systems. Cambridge University Press, 1995. | Zbl | MR
[9] de Medeiros (A. S.).— Singular foliations, differential p-forms. Ann. Fac. Sci. Toulouse Math., (6) 9, no.3, p. 451-466 (2000). | Zbl | MR | mathdoc-id
[10] Rosenberg (H.), Roussarie (R.), Weil (D.).— A classification of closed orientable manifolds of rank two. Ann. of Math., 91, p. 449-464 (1970). | Zbl | MR
[11] Sacksteder (R.).— Foliations, pseudogroups. Amer. J. Math., 87, p. 79-102 (1965). | Zbl | MR
[12] Scardua (B.), Seade (J.).— Codimension one foliations with Bott-Morse singularities I. Pre-print (2007). | Zbl
[13] Stefan (P.).— Accessible sets, orbits,, foliations with singularities. Proc. London Math. Soc., 29, p. 699-713 (1974). | Zbl | MR
[14] Sussmann (H. J.).— Orbits of families of vector fields, integrability of distributions. Trans. Amer. Math. Soc., 180, p. 171-188 (1973). | Zbl | MR
Cité par Sources :