Voir la notice de l'article provenant de la source Numdam
This paper deals with rank two connections on the projective line having four simple poles with prescribed local exponents 1/4 and
Dans cet article, nous étudions les connexions de rang deux sur la droite projective ayant quatre pôles simples avec exposants locaux prescrits 1/4 et
Loray, Frank 1 ; van der Put, Marius 2 ; Ulmer, Felix 1
@article{AFST_2008_6_17_2_371_0, author = {Loray, Frank and van der Put, Marius and Ulmer, Felix}, title = {The {Lam\'e} family of connections on the projective line}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {371--409}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 17}, number = {2}, year = {2008}, doi = {10.5802/afst.1187}, mrnumber = {2487859}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1187/} }
TY - JOUR AU - Loray, Frank AU - van der Put, Marius AU - Ulmer, Felix TI - The Lamé family of connections on the projective line JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2008 SP - 371 EP - 409 VL - 17 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1187/ DO - 10.5802/afst.1187 LA - en ID - AFST_2008_6_17_2_371_0 ER -
%0 Journal Article %A Loray, Frank %A van der Put, Marius %A Ulmer, Felix %T The Lamé family of connections on the projective line %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2008 %P 371-409 %V 17 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1187/ %R 10.5802/afst.1187 %G en %F AFST_2008_6_17_2_371_0
Loray, Frank; van der Put, Marius; Ulmer, Felix. The Lamé family of connections on the projective line. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 17 (2008) no. 2, pp. 371-409. doi : 10.5802/afst.1187. https://geodesic-test.mathdoc.fr/articles/10.5802/afst.1187/
[1] Barth (W.) and Michel (J.).— Modular curves and Poncelet polygons, Math. Ann. 295, 25-49 (1993). | Zbl | MR
[2] Berkenbosch (M.) and van der Put (M.).— Families of linear differential equations on the projective line, Groupes de Galois arithmétiques et différentiels, 39-68, Sém. Congr., 13, Soc. Math. France, Paris, 2006. | Zbl | MR
[3] Beukers (F.).— Solutions of a Lamé system private notes, November 10 2004.
[4] Beukers (F.) and van der Waall (A.).— Lamé equations with algebraic solutions, J. Differential Equations 197, 1-25 (2004). | Zbl | MR
[5] Chiarellotto (B.).— On Lamé Operators which are Pullbacks of Hypergeometric Ones, Trans. Amer. Math. Soc., Vol 347, 2735-2780 (1995). | Zbl | MR
[6] Hitchin (N.J.).— Poncelet Polygons and the Painlevé Equations, Geometry and analysis (Bombay, 1992), 151–185, Tata Inst. Fund. Res., Bombay (1995). | Zbl | MR
[7] Hitchin (N.J.).— Twistor spaces, Einstein metrics and isomonodromic transformations, J. Differential Geometry 42, 30-112 (1995). | Zbl | MR
[8] van Hoeij (M.) and van der Put (M.).— Descent for differential modules and skew fields, J. Algebra 296, 18-55 (2006). | MR
[9] Inaba (M.), Iwasaki (K.) and Saito (M.).— Dynamics of the Sixth Painlevé equation, Théories asymptotiques et équations de Painlevé, 103-167, Sémin. Congr., 14, Soc. Math. France, Paris, 2006. | MR
[10] Jimbo (M.) and Miwa (T.).— Monodromy preserving deformations of linear ordinary differential equations with rational coefficients II, Physica 2D, 407-448 (1981a). | MR | Zbl
[11] Lang (S.).— Elliptic curves : Diophantine analysis, Grundlehren no 231 (1978). | Zbl | MR
[12] Manin (Yu.I.).— Sixth Painlevé equation, universal elliptic curve, and Mirror of
[13] Mazzocco (M.).— Picard and Chazy solutions to the Painlevé VI equation, Math. Ann. 321, no 1, 157-195 (2001). | Zbl | MR
[14] Merel (L.).— Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., 124, 437-449 (1996). | Zbl | MR
[15] Okamoto (K.).— Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé Japan J. Math. 5, 1-79 (1979). | Zbl | MR
[16] Okamoto (K.).— Studies on the Painlevé equations I. Sixth Painlevé equation
[17] Picard (É.).— Mémoire sur la théorie des fonctions algébriques de deux variables, Journal de Mathématiques Pures et Appliquées, 5, 135-319 (1889). | EuDML | JFM | mathdoc-id
[18] Saito (M.-H.) and Takebe (T.).— Classification of Okamoto-Painlevé pairs, Kobe J. Math., 19, 21-50 (2002). | Zbl | MR
[19] Saito (M.-H.) and Terajima (H.).— Nodal curves and Riccati solutions of Painlevé equations, J. Math. Kyoto Univ., 44-3, 529-568 (2004). | Zbl | MR
[20] Sakai (H.).— Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys., 220, 165-229 (2001). | Zbl | MR
[21] Silverman (J.H.).— The Arithmetic of Elliptic Curves, GTM 106, Springer Verlag (1986). | Zbl | MR
[22] Singer (M.F.).— Moduli of Linear Differential Equations on the Riemann Sphere, Pac.J. Math., 160, 343-395 (1993). | Zbl | MR
[23] Trager (B.M.).— Integration of algebraic functions, Ph.D. Thesis M.I.T., September (1984).
[24] Washington (L. C.).— Elliptic Curves , Chapman-Hall (2003). | Zbl | MR
Cité par Sources :