Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem
Journal of the European Mathematical Society, Tome 20 (2018) no. 9, pp. 2181-2208.

Voir la notice de l'article provenant de la source EMS Press

We introduce the notion of combinatorial positivity of translation-invariant valuations on convex polytopes that extends the nonnegativity of Ehrhart h∗-vectors. We give a surprisingly simple characterization of combinatorially positive valuations that implies Stanley’s nonnegativity and monotonicity of h∗-vectors and generalizes work of Beck et al. (2010) from solid-angle polynomials to all translation-invariant simple valuations. For general polytopes, this yields a new characterization of the volume as the unique combinatorially positive valuation up to scaling. For lattice polytopes our results extend work of Betke–Kneser (1985) and give a discrete Hadwiger theorem: There is essentially a unique combinatorially-positive basis for the space of lattice-invariant valuations. As byproducts, we prove a multivariate Ehrhart–Macdonald reciprocity and we show universality of weight valuations studied in Beck et al. (2010).
DOI : 10.4171/jems/809
Classification : 52-XX, 05-XX
Mots-clés : Ehrhart polynomials, h∗-vectors, combinatorial positivity, translation-invariant valuations, discrete Hadwiger theorem, multivariate reciprocity
@article{JEMS_2018_20_9_a3,
     author = {Katharina Jochemko and Raman Sanyal},
     title = {Combinatorial positivity of translation-invariant valuations and a discrete {Hadwiger} theorem},
     journal = {Journal of the European Mathematical Society},
     pages = {2181--2208},
     publisher = {mathdoc},
     volume = {20},
     number = {9},
     year = {2018},
     doi = {10.4171/jems/809},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/809/}
}
TY  - JOUR
AU  - Katharina Jochemko
AU  - Raman Sanyal
TI  - Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 2181
EP  - 2208
VL  - 20
IS  - 9
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/809/
DO  - 10.4171/jems/809
ID  - JEMS_2018_20_9_a3
ER  - 
%0 Journal Article
%A Katharina Jochemko
%A Raman Sanyal
%T Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem
%J Journal of the European Mathematical Society
%D 2018
%P 2181-2208
%V 20
%N 9
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/809/
%R 10.4171/jems/809
%F JEMS_2018_20_9_a3
Katharina Jochemko; Raman Sanyal. Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem. Journal of the European Mathematical Society, Tome 20 (2018) no. 9, pp. 2181-2208. doi : 10.4171/jems/809. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/809/

Cité par Sources :