Wilf’s conjecture and Macaulay’s theorem
Journal of the European Mathematical Society, Tome 20 (2018) no. 9, pp. 2105-2129.

Voir la notice de l'article provenant de la source EMS Press

Let S⊆N be a numerical semigroup with multiplicity m=min(S∖{0}), conductor c=max(N∖S)+1 and minimally generated by e elements. Let L be the set of elements of S which are smaller than c. Wilf conjectured in 1978 that ∣L∣ is bounded below by c/e. We show here that if c≤3m, then S satisfies Wilf's conjecture. Combined with a recent result of Zhai, this implies that the conjecture is asymptotically true as the genus g(S)=∣N∖S∣ goes to infinity. One main tool in this paper is a classical theorem of Macaulay on the growth of Hilbert functions of standard graded algebras.
DOI : 10.4171/jems/807
Classification : 05-XX, 11-XX, 13-XX, 20-XX
Mots-clés : Numerical semigroup, Wilf conjecture, Apéry element, graded algebra, Hilbert function, binomial representation, sumset
@article{JEMS_2018_20_9_a1,
     author = {Shalom Eliahou},
     title = {Wilf{\textquoteright}s conjecture and {Macaulay{\textquoteright}s} theorem},
     journal = {Journal of the European Mathematical Society},
     pages = {2105--2129},
     publisher = {mathdoc},
     volume = {20},
     number = {9},
     year = {2018},
     doi = {10.4171/jems/807},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/807/}
}
TY  - JOUR
AU  - Shalom Eliahou
TI  - Wilf’s conjecture and Macaulay’s theorem
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 2105
EP  - 2129
VL  - 20
IS  - 9
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/807/
DO  - 10.4171/jems/807
ID  - JEMS_2018_20_9_a1
ER  - 
%0 Journal Article
%A Shalom Eliahou
%T Wilf’s conjecture and Macaulay’s theorem
%J Journal of the European Mathematical Society
%D 2018
%P 2105-2129
%V 20
%N 9
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/807/
%R 10.4171/jems/807
%F JEMS_2018_20_9_a1
Shalom Eliahou. Wilf’s conjecture and Macaulay’s theorem. Journal of the European Mathematical Society, Tome 20 (2018) no. 9, pp. 2105-2129. doi : 10.4171/jems/807. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/807/

Cité par Sources :