Sharp bound on the number of maximal sum-free subsets of integers
Journal of the European Mathematical Society, Tome 20 (2018) no. 8, pp. 1885-1911.

Voir la notice de l'article provenant de la source EMS Press

Cameron and Erdős [6] asked whether the number of maximal sum-free sets in {1,...,n} is much smaller than the number of sum-free sets. In the same paper they gave a lower bound of 2⌊n/4⌋ for the number of maximal sum-free sets. Here, we prove the following: For each 1≤i≤4, there is a constant Ci​ such that, given any n≡imod4, {1,...,n} contains (Ci​+o(1))2n/4 maximal sum-free sets. Our proof makes use of container and removal lemmas of Green [11, 12], a structural result of Deshouillers, Freiman, Sós and Temkin [7] and a recent bound on the number of subsets of integers with small sumset by Green and Morris [13]. We also discuss related results and open problems on the number of maximal sum-free subsets of abelian groups.
DOI : 10.4171/jems/802
Classification : 11-XX, 05-XX
Mots-clés : Sum-free sets, Independent sets, container method
@article{JEMS_2018_20_8_a2,
     author = {J\'ozsef Balogh and Hong Liu and Maryam Sharifzadeh and Andrew Treglown},
     title = {Sharp bound on the number of maximal sum-free subsets of integers},
     journal = {Journal of the European Mathematical Society},
     pages = {1885--1911},
     publisher = {mathdoc},
     volume = {20},
     number = {8},
     year = {2018},
     doi = {10.4171/jems/802},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/802/}
}
TY  - JOUR
AU  - József Balogh
AU  - Hong Liu
AU  - Maryam Sharifzadeh
AU  - Andrew Treglown
TI  - Sharp bound on the number of maximal sum-free subsets of integers
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 1885
EP  - 1911
VL  - 20
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/802/
DO  - 10.4171/jems/802
ID  - JEMS_2018_20_8_a2
ER  - 
%0 Journal Article
%A József Balogh
%A Hong Liu
%A Maryam Sharifzadeh
%A Andrew Treglown
%T Sharp bound on the number of maximal sum-free subsets of integers
%J Journal of the European Mathematical Society
%D 2018
%P 1885-1911
%V 20
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/802/
%R 10.4171/jems/802
%F JEMS_2018_20_8_a2
József Balogh; Hong Liu; Maryam Sharifzadeh; Andrew Treglown. Sharp bound on the number of maximal sum-free subsets of integers. Journal of the European Mathematical Society, Tome 20 (2018) no. 8, pp. 1885-1911. doi : 10.4171/jems/802. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/802/

Cité par Sources :