Bounded variation approximation of Lp dyadic martingales and solutions to elliptic equations
Journal of the European Mathematical Society, Tome 20 (2018) no. 8, pp. 1819-1850.

Voir la notice de l'article provenant de la source EMS Press

We prove continuity and surjectivity of the trace map onto Lp​(Rn), from a space of functions of locally bounded variation, defined by the Carleson functional. The extension map is constructed through a stopping time argument. This extends earlier work by Varopoulos in the BMO case, related to the Corona Theorem. We also prove Lp​ Carleson approximability results for solutions to elliptic non-smooth divergence form equations, which generalize results in the case p=∞ by Hofmann, Kenig, Mayboroda and Pipher.
DOI : 10.4171/jems/800
Classification : 42-XX, 35-XX
Mots-clés : Extension map, Carleson functional, approximability, stopping time argument, Corona Theorem, elliptic equation, bounded variation
@article{JEMS_2018_20_8_a0,
     author = {Tuomas Hyt\"onen and Andreas Ros\'en},
     title = {Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations},
     journal = {Journal of the European Mathematical Society},
     pages = {1819--1850},
     publisher = {mathdoc},
     volume = {20},
     number = {8},
     year = {2018},
     doi = {10.4171/jems/800},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/800/}
}
TY  - JOUR
AU  - Tuomas Hytönen
AU  - Andreas Rosén
TI  - Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 1819
EP  - 1850
VL  - 20
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/800/
DO  - 10.4171/jems/800
ID  - JEMS_2018_20_8_a0
ER  - 
%0 Journal Article
%A Tuomas Hytönen
%A Andreas Rosén
%T Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations
%J Journal of the European Mathematical Society
%D 2018
%P 1819-1850
%V 20
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/800/
%R 10.4171/jems/800
%F JEMS_2018_20_8_a0
Tuomas Hytönen; Andreas Rosén. Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations. Journal of the European Mathematical Society, Tome 20 (2018) no. 8, pp. 1819-1850. doi : 10.4171/jems/800. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/800/
  • Mourgoglou, Mihalis; Zacharopoulos, Thanasis Varopoulos extensions in domains with Ahlfors-regular boundaries and applications to boundary value problems for elliptic systems with L coefficients, Advances in Mathematics, Volume 461 (2025), p. 85 (Id/No 110054) | DOI:10.1016/j.aim.2024.110054 | Zbl:7967022
  • Mourgoglou, Mihalis; Tolsa, Xavier The regularity problem for the Laplace equation in rough domains, Duke Mathematical Journal, Volume 173 (2024) no. 9, pp. 1731-1837 | DOI:10.1215/00127094-2023-0044 | Zbl:1548.31020
  • Rosén, Andreas Sharp weighted non-tangential maximal estimates via Carleson-sparse domination, The Journal of Geometric Analysis, Volume 34 (2024) no. 12, p. 21 (Id/No 360) | DOI:10.1007/s12220-024-01814-3 | Zbl:1550.42033
  • Bortz, S.; Poggi, B.; Tapiola, O.; Tolsa, X. The A condition, ε-approximators, and Varopoulos extensions in uniform domains, The Journal of Geometric Analysis, Volume 34 (2024) no. 7, p. 54 (Id/No 218) | DOI:10.1007/s12220-024-01666-x | Zbl:1548.35121
  • Hytönen, Tuomas; Rosén, Andreas Causal sparse domination of Beurling maximal regularity operators, Journal d'Analyse Mathématique, Volume 150 (2023) no. 2, pp. 645-672 | DOI:10.1007/s11854-023-0285-0 | Zbl:1523.42026
  • Hofmann, Steve; Tapiola, Olli Uniform rectifiability implies Varopoulos extensions, Advances in Mathematics, Volume 390 (2021), p. 53 (Id/No 107961) | DOI:10.1016/j.aim.2021.107961 | Zbl:1487.42058
  • Hofmann, Steve; Tapiola, Olli Uniform rectifiability and ε-approximability of harmonic functions in Lp, Annales de l'Institut Fourier, Volume 70 (2020) no. 4, pp. 1595-1638 | DOI:10.5802/aif.3359 | Zbl:1465.42024
  • Bortz, Simon; Tapiola, Olli ε-approximability of harmonic functions in Lp implies uniform rectifiability, Proceedings of the American Mathematical Society, Volume 147 (2019) no. 5, pp. 2107-2121 | DOI:10.1090/proc/14394 | Zbl:1469.31009

Cité par 8 documents. Sources : zbMATH