Rational exponents in extremal graph theory
Journal of the European Mathematical Society, Tome 20 (2018) no. 7, pp. 1747-1757.

Voir la notice de l'article provenant de la source EMS Press

Given a family of graphs H, the extremal number ex(n,H) is the largest m for which there exists a graph with n vertices and m edges containing no graph from the family H as a subgraph. We show that for every rational number r between 1 and 2, there is a family of graphs Hr​ such that ex(n,Hr​)=Θ(nr). This solves a longstanding problem in the area of extremal graph theory.
DOI : 10.4171/jems/798
Classification : 05-XX
Mots-clés : Extremal graph theory, bipartite graphs, algebraic constructions
@article{JEMS_2018_20_7_a5,
     author = {Boris Bukh and David Conlon},
     title = {Rational exponents in extremal graph theory},
     journal = {Journal of the European Mathematical Society},
     pages = {1747--1757},
     publisher = {mathdoc},
     volume = {20},
     number = {7},
     year = {2018},
     doi = {10.4171/jems/798},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/798/}
}
TY  - JOUR
AU  - Boris Bukh
AU  - David Conlon
TI  - Rational exponents in extremal graph theory
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 1747
EP  - 1757
VL  - 20
IS  - 7
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/798/
DO  - 10.4171/jems/798
ID  - JEMS_2018_20_7_a5
ER  - 
%0 Journal Article
%A Boris Bukh
%A David Conlon
%T Rational exponents in extremal graph theory
%J Journal of the European Mathematical Society
%D 2018
%P 1747-1757
%V 20
%N 7
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/798/
%R 10.4171/jems/798
%F JEMS_2018_20_7_a5
Boris Bukh; David Conlon. Rational exponents in extremal graph theory. Journal of the European Mathematical Society, Tome 20 (2018) no. 7, pp. 1747-1757. doi : 10.4171/jems/798. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/798/

Cité par Sources :