An approximation principle for congruence subgroups
Journal of the European Mathematical Society, Tome 20 (2018) no. 5, pp. 1075-1138.

Voir la notice de l'article provenant de la source EMS Press

The motivating question of this paper is roughly the following: given a flat group scheme G over Zp​, p prime, with semisimple generic fiber GQp​​, how far are open subgroups of G(Zp​) from subgroups of the form X(Zp​)Kp​(pn), where X is a subgroup scheme of G and Kp​(pn) is the principal congruence subgroup Ker(G(Zp​)→G(Z/pnZ))? More precisely, we will show that for GQp​​ simply connected there exist constants J≥1 and ε>0, depending only on G, such that any open subgroup of G(Zp​) of level pn admits an open subgroup of index ≤J which is contained in X(Zp​)Kp​(p⌈εn⌉) for some proper, connected algebraic subgroup X of G defined over Qp​. Moreover, if G is defined over Z, then ε and J can be taken independently of p.
DOI : 10.4171/jems/783
Classification : 20-XX, 22-XX
Mots-clés : Lattices in Lie groups, uniform pro-p groups, Lie algebras
@article{JEMS_2018_20_5_a1,
     author = {Tobias Finis and Erez Lapid},
     title = {An approximation principle for congruence subgroups},
     journal = {Journal of the European Mathematical Society},
     pages = {1075--1138},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2018},
     doi = {10.4171/jems/783},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/783/}
}
TY  - JOUR
AU  - Tobias Finis
AU  - Erez Lapid
TI  - An approximation principle for congruence subgroups
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 1075
EP  - 1138
VL  - 20
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/783/
DO  - 10.4171/jems/783
ID  - JEMS_2018_20_5_a1
ER  - 
%0 Journal Article
%A Tobias Finis
%A Erez Lapid
%T An approximation principle for congruence subgroups
%J Journal of the European Mathematical Society
%D 2018
%P 1075-1138
%V 20
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/783/
%R 10.4171/jems/783
%F JEMS_2018_20_5_a1
Tobias Finis; Erez Lapid. An approximation principle for congruence subgroups. Journal of the European Mathematical Society, Tome 20 (2018) no. 5, pp. 1075-1138. doi : 10.4171/jems/783. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/783/

Cité par Sources :