Vectorial nonlinear potential theory
Journal of the European Mathematical Society, Tome 20 (2018) no. 4, pp. 929-1004.

Voir la notice de l'article provenant de la source EMS Press

We settle the longstanding problem of establishing pointwise potential estimates for vectorial solutions u:Ω→RN to the non-homogeneous p-Laplacean system
DOI : 10.4171/jems/780
Classification : 35-XX
Mots-clés : Nonlinear potential theory, regularity, degenerate elliptic systems, measure data
@article{JEMS_2018_20_4_a3,
     author = {Tuomo Kuusi and Giuseppe Mingione},
     title = {Vectorial nonlinear potential theory},
     journal = {Journal of the European Mathematical Society},
     pages = {929--1004},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2018},
     doi = {10.4171/jems/780},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/780/}
}
TY  - JOUR
AU  - Tuomo Kuusi
AU  - Giuseppe Mingione
TI  - Vectorial nonlinear potential theory
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 929
EP  - 1004
VL  - 20
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/780/
DO  - 10.4171/jems/780
ID  - JEMS_2018_20_4_a3
ER  - 
%0 Journal Article
%A Tuomo Kuusi
%A Giuseppe Mingione
%T Vectorial nonlinear potential theory
%J Journal of the European Mathematical Society
%D 2018
%P 929-1004
%V 20
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/780/
%R 10.4171/jems/780
%F JEMS_2018_20_4_a3
Tuomo Kuusi; Giuseppe Mingione. Vectorial nonlinear potential theory. Journal of the European Mathematical Society, Tome 20 (2018) no. 4, pp. 929-1004. doi : 10.4171/jems/780. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/780/

Cité par Sources :