Counting designs
Journal of the European Mathematical Society, Tome 20 (2018) no. 4, pp. 903-927.

Voir la notice de l'article provenant de la source EMS Press

We give estimates on the number of combinatorial designs, which prove (and generalise) a conjecture of Wilson from 1974 on the number of Steiner Triple Systems. This paper also serves as an expository treatment of our recently developed method of Randomised Algebraic Construction: we give a simpler proof of a special case of our result on clique decompositions of hypergraphs, namely triangle decompositions of quasirandom graphs.
DOI : 10.4171/jems/779
Classification : 05-XX
Mots-clés : Hypergraph Decomposition, Design Theory
@article{JEMS_2018_20_4_a2,
     author = {Peter Keevash},
     title = {Counting designs},
     journal = {Journal of the European Mathematical Society},
     pages = {903--927},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2018},
     doi = {10.4171/jems/779},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/779/}
}
TY  - JOUR
AU  - Peter Keevash
TI  - Counting designs
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 903
EP  - 927
VL  - 20
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/779/
DO  - 10.4171/jems/779
ID  - JEMS_2018_20_4_a2
ER  - 
%0 Journal Article
%A Peter Keevash
%T Counting designs
%J Journal of the European Mathematical Society
%D 2018
%P 903-927
%V 20
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/779/
%R 10.4171/jems/779
%F JEMS_2018_20_4_a2
Peter Keevash. Counting designs. Journal of the European Mathematical Society, Tome 20 (2018) no. 4, pp. 903-927. doi : 10.4171/jems/779. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/779/

Cité par Sources :