Boundedness of moduli of varieties of general type
Journal of the European Mathematical Society, Tome 20 (2018) no. 4, pp. 865-901.

Voir la notice de l'article provenant de la source EMS Press

We show that the family of semi log canonical pairs with ample log canonical class and with fixed volume is bounded.
DOI : 10.4171/jems/778
Classification : 14-XX
Mots-clés : Moduli, boundedness, general type, minimal model program, abundance
@article{JEMS_2018_20_4_a1,
     author = {Christopher D. Hacon and James McKernan and Chenyang Xu},
     title = {Boundedness of moduli of varieties of general type},
     journal = {Journal of the European Mathematical Society},
     pages = {865--901},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2018},
     doi = {10.4171/jems/778},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/778/}
}
TY  - JOUR
AU  - Christopher D. Hacon
AU  - James McKernan
AU  - Chenyang Xu
TI  - Boundedness of moduli of varieties of general type
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 865
EP  - 901
VL  - 20
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/778/
DO  - 10.4171/jems/778
ID  - JEMS_2018_20_4_a1
ER  - 
%0 Journal Article
%A Christopher D. Hacon
%A James McKernan
%A Chenyang Xu
%T Boundedness of moduli of varieties of general type
%J Journal of the European Mathematical Society
%D 2018
%P 865-901
%V 20
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/778/
%R 10.4171/jems/778
%F JEMS_2018_20_4_a1
Christopher D. Hacon; James McKernan; Chenyang Xu. Boundedness of moduli of varieties of general type. Journal of the European Mathematical Society, Tome 20 (2018) no. 4, pp. 865-901. doi : 10.4171/jems/778. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/778/

Cité par Sources :