Diffeomorphic approximation of W1,1 planar Sobolev homeomorphisms
Journal of the European Mathematical Society, Tome 20 (2018) no. 3, pp. 597-656.

Voir la notice de l'article provenant de la source EMS Press

Let Ω⊆R2 be a domain and let f∈W1,1(Ω,R2) be a homeomorphism (between Ω and f(Ω)). Then there exists a sequence of smooth diffeomorphisms fk​ converging to f in W1,1(Ω,R2) and uniformly.
DOI : 10.4171/jems/774
Classification : 46-XX
Mots-clés : Mapping of finite distortion, approximation
@article{JEMS_2018_20_3_a1,
     author = {Stanislav Hencl and Aldo Pratelli},
     title = {Diffeomorphic approximation of $W^{1,1}$ planar {Sobolev} homeomorphisms},
     journal = {Journal of the European Mathematical Society},
     pages = {597--656},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2018},
     doi = {10.4171/jems/774},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/774/}
}
TY  - JOUR
AU  - Stanislav Hencl
AU  - Aldo Pratelli
TI  - Diffeomorphic approximation of $W^{1,1}$ planar Sobolev homeomorphisms
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 597
EP  - 656
VL  - 20
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/774/
DO  - 10.4171/jems/774
ID  - JEMS_2018_20_3_a1
ER  - 
%0 Journal Article
%A Stanislav Hencl
%A Aldo Pratelli
%T Diffeomorphic approximation of $W^{1,1}$ planar Sobolev homeomorphisms
%J Journal of the European Mathematical Society
%D 2018
%P 597-656
%V 20
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/774/
%R 10.4171/jems/774
%F JEMS_2018_20_3_a1
Stanislav Hencl; Aldo Pratelli. Diffeomorphic approximation of $W^{1,1}$ planar Sobolev homeomorphisms. Journal of the European Mathematical Society, Tome 20 (2018) no. 3, pp. 597-656. doi : 10.4171/jems/774. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/774/

Cité par Sources :