Large character sums: Burgess's theorem and zeros of L-functions
Journal of the European Mathematical Society, Tome 20 (2018) no. 1, pp. 1-14.

Voir la notice de l'article provenant de la source EMS Press

We study the conjecture that ∑n≤x​χ(n)=o(x) for any primitive Dirichlet character χ modulo q with x≥qε, which is known to be true if the Riemann Hypothesis holds for L(s,χ). We show that it holds under the weaker assumption that „100%" of the zeros of L(s,χ) up to height 41​ lie on the critical line. We also establish various other consequences of having large character sums; for example, that if the conjecture holds for χ2 then it also holds for χ.
DOI : 10.4171/jems/757
Classification : 11-XX
Mots-clés : Bounds on character sums, zeros of Dirichlet L-functions, multiplicative functions
@article{JEMS_2018_20_1_a0,
     author = {Andrew Granville and Kannan Soundararajan},
     title = {Large character sums: {Burgess's} theorem and zeros of $L$-functions},
     journal = {Journal of the European Mathematical Society},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.4171/jems/757},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/757/}
}
TY  - JOUR
AU  - Andrew Granville
AU  - Kannan Soundararajan
TI  - Large character sums: Burgess's theorem and zeros of $L$-functions
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 1
EP  - 14
VL  - 20
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/757/
DO  - 10.4171/jems/757
ID  - JEMS_2018_20_1_a0
ER  - 
%0 Journal Article
%A Andrew Granville
%A Kannan Soundararajan
%T Large character sums: Burgess's theorem and zeros of $L$-functions
%J Journal of the European Mathematical Society
%D 2018
%P 1-14
%V 20
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/757/
%R 10.4171/jems/757
%F JEMS_2018_20_1_a0
Andrew Granville; Kannan Soundararajan. Large character sums: Burgess's theorem and zeros of $L$-functions. Journal of the European Mathematical Society, Tome 20 (2018) no. 1, pp. 1-14. doi : 10.4171/jems/757. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/757/
  • Mangerel, Alexander P. Large sums of high-order characters, Journal of the London Mathematical Society. Second Series, Volume 109 (2024) no. 1, p. 44 (Id/No e12841) | DOI:10.1112/jlms.12841 | Zbl:1543.11073
  • Drappeau, Sary; Pratt, Kyle; Radziwiłł, Maksym One-level density estimates for Dirichlet L-functions with extended support, Algebra Number Theory, Volume 17 (2023) no. 4, pp. 805-830 | DOI:10.2140/ant.2023.17.805 | Zbl:1527.11070
  • Soundararajan, Kannan The distribution of values of zeta and L-functions, International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 2. Plenary lectures, Berlin: European Mathematical Society (EMS), 2023, pp. 1260-1310 | DOI:10.4171/icm2022/148 | Zbl:1533.11152
  • Klurman, Oleksiy; Mangerel, Alexander P.; Teräväinen, Joni Multiplicative functions in short arithmetic progressions, Proceedings of the London Mathematical Society. Third Series, Volume 127 (2023) no. 2, pp. 366-446 | DOI:10.1112/plms.12546 | Zbl:1530.11077
  • Fouvry, Étienne; Shparlinski, Igor E. On character sums with determinants, Science China. Mathematics, Volume 66 (2023) no. 12, pp. 2693-2714 | DOI:10.1007/s11425-022-2122-0 | Zbl:1542.11071
  • Basak, Debmalya; Nath, Kunjakanan; Zaharescu, Alexandru Gaussian phenomena for small quadratic residues and non-residues, Transactions of the American Mathematical Society, Volume 376 (2023) no. 5, pp. 3695-3724 | DOI:10.1090/tran/8853 | Zbl:1528.11074
  • Grantham, Jon An unconditional improvement to the running time of the quadratic Frobenius test, Journal of Number Theory, Volume 210 (2020), pp. 476-480 | DOI:10.1016/j.jnt.2019.10.006 | Zbl:1465.11234
  • Soundararajan, Kannan; Thorner, Jesse Weak subconvexity without a Ramanujan hypothesis, Duke Mathematical Journal, Volume 168 (2019) no. 7, pp. 1231-1268 | DOI:10.1215/00127094-2018-0065 | Zbl:1426.11053
  • Banks, William D.; Guo, Victor Z. Quadratic nonresidues below the Burgess bound, International Journal of Number Theory, Volume 13 (2017) no. 3, pp. 751-759 | DOI:10.1142/s1793042117500397 | Zbl:1416.11011

Cité par 9 documents. Sources : zbMATH