Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential
Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 229-286.

Voir la notice de l'article provenant de la source EMS Press

We prove the existence of quasi-periodic solutions for Schrödinger equations with a multiplicative potential on Td,d≥1, finitely differentiable nonlinearities, and tangential frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. If the nonlinearity and the potential are C∞ then the solutions are C∞. The proofs are based on an improved Nash-Moser iterative scheme, which assumes the weakest tame estimates for the inverse linearized operators ("Green functions") along scales of Sobolev spaces. The key off-diagonal decay estimates of the Green functions are proved via a new multiscale inductive analysis. The main novelty concerns the measure and "complexity" estimates.
DOI : 10.4171/jems/361
Classification : 35-XX, 37-XX, 00-XX
Mots-clés : Nonlinear Schrödinger equation, Nash–Moser theory, KAM for PDE, quasi-periodic solutions, small divisors, in
@article{JEMS_2013_15_1_a7,
     author = {Massimiliano Berti and Philippe Bolle},
     title = {Quasi-periodic solutions with {Sobolev} regularity of {NLS} on $\mathbb T^d$ with a multiplicative potential},
     journal = {Journal of the European Mathematical Society},
     pages = {229--286},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     doi = {10.4171/jems/361},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/361/}
}
TY  - JOUR
AU  - Massimiliano Berti
AU  - Philippe Bolle
TI  - Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb T^d$ with a multiplicative potential
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 229
EP  - 286
VL  - 15
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/361/
DO  - 10.4171/jems/361
ID  - JEMS_2013_15_1_a7
ER  - 
%0 Journal Article
%A Massimiliano Berti
%A Philippe Bolle
%T Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb T^d$ with a multiplicative potential
%J Journal of the European Mathematical Society
%D 2013
%P 229-286
%V 15
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/361/
%R 10.4171/jems/361
%F JEMS_2013_15_1_a7
Massimiliano Berti; Philippe Bolle. Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb T^d$ with a multiplicative potential. Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 229-286. doi : 10.4171/jems/361. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/361/

Cité par Sources :