On the global existence for the Muskat problem
Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 201-227.

Voir la notice de l'article provenant de la source EMS Press

The Muskat problem models the dynamics of the interface between two incompressible immiscible fluids with different constant densities. In this work we prove three results. First we prove an L2(R) maximum principle, in the form of a new "log'' conservation law which is satisfied by the equation (1) for the interface. Our second result is a proof of global existence for unique strong solutions if the initial data is smaller than an explicitly computable constant, for instance ∥f∥1​≤1/5. Previous results of this sort used a small constant ε≪1 which was not explicit. Lastly, we prove a global existence result for Lipschitz continuous solutions with initial data that satisfy ∥f0​∥L∞​∞ and ∥∂x​f0​∥L∞​1. We take advantage of the fact that the bound ∥∂x​f0​∥L∞​1 is propagated by solutions, which grants strong compactness properties in comparison to the log conservation law.
DOI : 10.4171/jems/360
Classification : 35-XX, 76-XX, 00-XX
Mots-clés : Porous media, incompressible flows, fluid interface, global existence
@article{JEMS_2013_15_1_a6,
     author = {Peter Constantin and Diego C\'ordoba and Francisco Gancedo and Robert M. Strain},
     title = {On the global existence for the {Muskat} problem},
     journal = {Journal of the European Mathematical Society},
     pages = {201--227},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     doi = {10.4171/jems/360},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/360/}
}
TY  - JOUR
AU  - Peter Constantin
AU  - Diego Córdoba
AU  - Francisco Gancedo
AU  - Robert M. Strain
TI  - On the global existence for the Muskat problem
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 201
EP  - 227
VL  - 15
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/360/
DO  - 10.4171/jems/360
ID  - JEMS_2013_15_1_a6
ER  - 
%0 Journal Article
%A Peter Constantin
%A Diego Córdoba
%A Francisco Gancedo
%A Robert M. Strain
%T On the global existence for the Muskat problem
%J Journal of the European Mathematical Society
%D 2013
%P 201-227
%V 15
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/360/
%R 10.4171/jems/360
%F JEMS_2013_15_1_a6
Peter Constantin; Diego Córdoba; Francisco Gancedo; Robert M. Strain. On the global existence for the Muskat problem. Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 201-227. doi : 10.4171/jems/360. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/360/

Cité par Sources :