A Hardy type inequality for W0m,1(Ω) functions
Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 145-155.

Voir la notice de l'article provenant de la source EMS Press

We consider functions u∈W0m,1​(Ω), where Ω⊂RN is a smooth bounded domain, and m≥2 is an integer. For all j≥0, 1≤k≤m−1, such that 1≤j+k≤m, we prove that d(x)m−j−k∂ju(x)​∈W0k,1​(Ω) with
DOI : 10.4171/jems/357
Classification : 26-XX, 46-XX, 00-XX
Mots-clés : Hardy inequality, Sobolev spaces
@article{JEMS_2013_15_1_a3,
     author = {Hern\'an Castro and Juan D\'avila and Hui Wang},
     title = {A {Hardy} type inequality for $W^{m,1}_0(\Omega)$ functions},
     journal = {Journal of the European Mathematical Society},
     pages = {145--155},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     doi = {10.4171/jems/357},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/357/}
}
TY  - JOUR
AU  - Hernán Castro
AU  - Juan Dávila
AU  - Hui Wang
TI  - A Hardy type inequality for $W^{m,1}_0(\Omega)$ functions
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 145
EP  - 155
VL  - 15
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/357/
DO  - 10.4171/jems/357
ID  - JEMS_2013_15_1_a3
ER  - 
%0 Journal Article
%A Hernán Castro
%A Juan Dávila
%A Hui Wang
%T A Hardy type inequality for $W^{m,1}_0(\Omega)$ functions
%J Journal of the European Mathematical Society
%D 2013
%P 145-155
%V 15
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/357/
%R 10.4171/jems/357
%F JEMS_2013_15_1_a3
Hernán Castro; Juan Dávila; Hui Wang. A Hardy type inequality for $W^{m,1}_0(\Omega)$ functions. Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 145-155. doi : 10.4171/jems/357. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/357/

Cité par Sources :