Bridgeland-stable moduli spaces for K-trivial surfaces
Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 1-38.

Voir la notice de l'article provenant de la source EMS Press

We give a one-parameter family of Bridgeland stability conditions on the derived category of a smooth projective complex surface S and describe "wall-crossing behavior'' for objects with the same invariants as OC​(H) when H generates Pic(S) and C∈∣H∣. If, in addition, S is a K3 or Abelian surface, we use this description to construct a sequence of fine moduli spaces of Bridgeland-stable objects via Mukai flops and generalized elementary modifications of the universal coherent sheaf. We also discover a natural generalization of Thaddeus' stable pairs for curves embedded in the moduli spaces.
DOI : 10.4171/jems/354
Classification : 57-XX, 00-XX
Mots-clés :
@article{JEMS_2013_15_1_a0,
     author = {Daniele Arcara and Aaron Bertram},
     title = {Bridgeland-stable moduli spaces for $K$-trivial surfaces},
     journal = {Journal of the European Mathematical Society},
     pages = {1--38},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     doi = {10.4171/jems/354},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/354/}
}
TY  - JOUR
AU  - Daniele Arcara
AU  - Aaron Bertram
TI  - Bridgeland-stable moduli spaces for $K$-trivial surfaces
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 1
EP  - 38
VL  - 15
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/354/
DO  - 10.4171/jems/354
ID  - JEMS_2013_15_1_a0
ER  - 
%0 Journal Article
%A Daniele Arcara
%A Aaron Bertram
%T Bridgeland-stable moduli spaces for $K$-trivial surfaces
%J Journal of the European Mathematical Society
%D 2013
%P 1-38
%V 15
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/354/
%R 10.4171/jems/354
%F JEMS_2013_15_1_a0
Daniele Arcara; Aaron Bertram. Bridgeland-stable moduli spaces for $K$-trivial surfaces. Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 1-38. doi : 10.4171/jems/354. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/354/

Cité par Sources :