K3 surfaces with a symplectic automorphism of order 11
Journal of the European Mathematical Society, Tome 11 (2009) no. 4, pp. 799-818.

Voir la notice de l'article provenant de la source EMS Press

We classify possible finite groups of symplectic automorphisms of K3 surfaces of order divisible by 11. The characteristic of the ground field must be equal to 11. The complete list of such groups consists of five groups: the cyclic group C11​ of order 11, C11​⋊C5​, PSL2(F11​) and the Mathieu groups M11​, M22​. We also show that a surface X admitting an automorphism g of order 11 admits a g-invariant elliptic fibration with the Jacobian fibration isomorphic to one of explicitly given elliptic K3 surfaces.
DOI : 10.4171/jems/167
Classification : 14-XX, 00-XX
Mots-clés : K3 surfaces, positive characteristic, automorphism groups, wild action, Mathieu groups
@article{JEMS_2009_11_4_a3,
     author = {Igor V. Dolgachev and JongHae Keum},
     title = {K3 surfaces with a symplectic automorphism of order 11},
     journal = {Journal of the European Mathematical Society},
     pages = {799--818},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2009},
     doi = {10.4171/jems/167},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4171/jems/167/}
}
TY  - JOUR
AU  - Igor V. Dolgachev
AU  - JongHae Keum
TI  - K3 surfaces with a symplectic automorphism of order 11
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 799
EP  - 818
VL  - 11
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4171/jems/167/
DO  - 10.4171/jems/167
ID  - JEMS_2009_11_4_a3
ER  - 
%0 Journal Article
%A Igor V. Dolgachev
%A JongHae Keum
%T K3 surfaces with a symplectic automorphism of order 11
%J Journal of the European Mathematical Society
%D 2009
%P 799-818
%V 11
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4171/jems/167/
%R 10.4171/jems/167
%F JEMS_2009_11_4_a3
Igor V. Dolgachev; JongHae Keum. K3 surfaces with a symplectic automorphism of order 11. Journal of the European Mathematical Society, Tome 11 (2009) no. 4, pp. 799-818. doi : 10.4171/jems/167. https://geodesic-test.mathdoc.fr/articles/10.4171/jems/167/

Cité par Sources :