Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Mrinal Kanti Roychowdhury 1 ; Daniel J. Rudolph 2
@article{10_4064_fm198_2_5, author = {Mrinal Kanti Roychowdhury and Daniel J. Rudolph}, title = {The {Morse} minimal system is {finitarily Kakutani} equivalent to the binary odometer}, journal = {Fundamenta Mathematicae}, pages = {149--163}, publisher = {mathdoc}, volume = {198}, number = {2}, year = {2008}, doi = {10.4064/fm198-2-5}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm198-2-5/} }
TY - JOUR AU - Mrinal Kanti Roychowdhury AU - Daniel J. Rudolph TI - The Morse minimal system is finitarily Kakutani equivalent to the binary odometer JO - Fundamenta Mathematicae PY - 2008 SP - 149 EP - 163 VL - 198 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.4064/fm198-2-5/ DO - 10.4064/fm198-2-5 LA - en ID - 10_4064_fm198_2_5 ER -
%0 Journal Article %A Mrinal Kanti Roychowdhury %A Daniel J. Rudolph %T The Morse minimal system is finitarily Kakutani equivalent to the binary odometer %J Fundamenta Mathematicae %D 2008 %P 149-163 %V 198 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.4064/fm198-2-5/ %R 10.4064/fm198-2-5 %G en %F 10_4064_fm198_2_5
Mrinal Kanti Roychowdhury; Daniel J. Rudolph. The Morse minimal system is finitarily Kakutani equivalent to the binary odometer. Fundamenta Mathematicae, Tome 198 (2008) no. 2, pp. 149-163. doi : 10.4064/fm198-2-5. https://geodesic-test.mathdoc.fr/articles/10.4064/fm198-2-5/
Cité par Sources :