Stratified model categories
Fundamenta Mathematicae, Tome 178 (2003) no. 3, pp. 217-236.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The fourth axiom of a model category states that given a commutative square of maps, say i:AB, g:BY, f:AX, and p:XY such that gi=pf, if i is a cofibration, p a fibration and either i or p is a weak equivalence, then a lifting (i.e. a map h:BX such that ph=g and hi=f) exists. We show that for many model categories the two conditions that either i or p above is a weak equivalence can be embedded in an infinite number of conditions which imply the existence of a lifting (roughly, the weak equivalence condition can be split between i and p). There is a similar modification of the fifth axiom. We call such model categories “stratified" and show that the simplest model categories have this property. Moreover, under some assumptions a category associated to the category of simplicial sets by a family of adjoint functors has this structure. Postnikov decompositions and n-types exist in any such category.
DOI : 10.4064/fm178-3-3
Mots-clés : fourth axiom model category states given commutative square maps say cofibration fibration either weak equivalence lifting map exists many model categories conditions either above weak equivalence embedded infinite number conditions which imply existence lifting roughly weak equivalence condition split between there similar modification fifth axiom call model categories stratified simplest model categories have property moreover under assumptions category associated category simplicial sets family adjoint functors has structure postnikov decompositions n types exist category

Jan Spaliński 1

1 Faculty of Mathematics and Information Science Warsaw University of Technology Pl. Politechniki 1 00-661 Warszawa, Poland
@article{10_4064_fm178_3_3,
     author = {Jan Spali\'nski},
     title = {Stratified model categories},
     journal = {Fundamenta Mathematicae},
     pages = {217--236},
     publisher = {mathdoc},
     volume = {178},
     number = {3},
     year = {2003},
     doi = {10.4064/fm178-3-3},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-3-3/}
}
TY  - JOUR
AU  - Jan Spaliński
TI  - Stratified model categories
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 217
EP  - 236
VL  - 178
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-3-3/
DO  - 10.4064/fm178-3-3
LA  - en
ID  - 10_4064_fm178_3_3
ER  - 
%0 Journal Article
%A Jan Spaliński
%T Stratified model categories
%J Fundamenta Mathematicae
%D 2003
%P 217-236
%V 178
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-3-3/
%R 10.4064/fm178-3-3
%G en
%F 10_4064_fm178_3_3
Jan Spaliński. Stratified model categories. Fundamenta Mathematicae, Tome 178 (2003) no. 3, pp. 217-236. doi : 10.4064/fm178-3-3. https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-3-3/

Cité par Sources :