Universal acyclic resolutions for arbitrary coefficient groups
Fundamenta Mathematicae, Tome 178 (2003) no. 2, pp. 159-169.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for every compactum X and every integer n2 there are a compactum Z of dimension n+1 and a surjective UVn1-map r:ZX such that for every abelian group G and every integer k2 such that dimGXkn we have dimGZk and r is G-acyclic.
DOI : 10.4064/fm178-2-5
Mots-clés : prove every compactum every integer geq there compactum dimension leq surjective n map every abelian group every integer geq mathop dim nolimits leq leq have mathop dim nolimits leq g acyclic

Michael Levin 1

1 Department of Mathematics Ben Gurion University of the Negev P.O. Box 653 Be'er Sheva 84105, Israel
@article{10_4064_fm178_2_5,
     author = {Michael Levin},
     title = {Universal acyclic resolutions for arbitrary coefficient groups},
     journal = {Fundamenta Mathematicae},
     pages = {159--169},
     publisher = {mathdoc},
     volume = {178},
     number = {2},
     year = {2003},
     doi = {10.4064/fm178-2-5},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-2-5/}
}
TY  - JOUR
AU  - Michael Levin
TI  - Universal acyclic resolutions for arbitrary coefficient groups
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 159
EP  - 169
VL  - 178
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-2-5/
DO  - 10.4064/fm178-2-5
LA  - en
ID  - 10_4064_fm178_2_5
ER  - 
%0 Journal Article
%A Michael Levin
%T Universal acyclic resolutions for arbitrary coefficient groups
%J Fundamenta Mathematicae
%D 2003
%P 159-169
%V 178
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-2-5/
%R 10.4064/fm178-2-5
%G en
%F 10_4064_fm178_2_5
Michael Levin. Universal acyclic resolutions for arbitrary coefficient groups. Fundamenta Mathematicae, Tome 178 (2003) no. 2, pp. 159-169. doi : 10.4064/fm178-2-5. https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-2-5/

Cité par Sources :