Miller spaces and spherical resolvability of finite complexes
Fundamenta Mathematicae, Tome 178 (2003) no. 2, pp. 97-108.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let A be a fixed collection of spaces, and suppose K is a nilpotent space that can be built from spaces in A by a succession of cofiber sequences. We show that, under mild conditions on the collection A, it is possible to construct K from spaces in A using, instead, homotopy (inverse) limits and extensions by fibrations. One consequence is that if K is a nilpotent finite complex, then ΩK can be built from finite wedges of spheres using homotopy limits and extensions by fibrations. This is applied to show that if map(X,Sn) is weakly contractible for all sufficiently large n, then map(X,K) is weakly contractible for any nilpotent finite complex K.
DOI : 10.4064/fm178-2-1
Mots-clés : mathcal fixed collection spaces suppose nilpotent space built spaces mathcal succession cofiber sequences under mild conditions collection mathcal possible construct spaces mathcal using instead homotopy inverse limits extensions fibrations consequence nilpotent finite complex mit omega built finite wedges spheres using homotopy limits extensions fibrations applied map * weakly contractible sufficiently large map * weakly contractible nilpotent finite complex

Jeffrey Strom 1

1 Western Michigan University Kalamazoo, MI 49008, U.S.A.
@article{10_4064_fm178_2_1,
     author = {Jeffrey Strom},
     title = {Miller spaces and spherical resolvability of finite complexes},
     journal = {Fundamenta Mathematicae},
     pages = {97--108},
     publisher = {mathdoc},
     volume = {178},
     number = {2},
     year = {2003},
     doi = {10.4064/fm178-2-1},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-2-1/}
}
TY  - JOUR
AU  - Jeffrey Strom
TI  - Miller spaces and spherical resolvability of finite complexes
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 97
EP  - 108
VL  - 178
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-2-1/
DO  - 10.4064/fm178-2-1
LA  - en
ID  - 10_4064_fm178_2_1
ER  - 
%0 Journal Article
%A Jeffrey Strom
%T Miller spaces and spherical resolvability of finite complexes
%J Fundamenta Mathematicae
%D 2003
%P 97-108
%V 178
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-2-1/
%R 10.4064/fm178-2-1
%G en
%F 10_4064_fm178_2_1
Jeffrey Strom. Miller spaces and spherical resolvability of finite complexes. Fundamenta Mathematicae, Tome 178 (2003) no. 2, pp. 97-108. doi : 10.4064/fm178-2-1. https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-2-1/

Cité par Sources :