A Pieri-type formula for even orthogonal Grassmannians
Fundamenta Mathematicae, Tome 178 (2003) no. 1, pp. 49-96.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the cohomology ring of the Grassmannian G of isotropic n-subspaces of a complex 2m-dimensional vector space, endowed with a nondegenerate orthogonal form (here 1nm). We state and prove a formula giving the Schubert class decomposition of the cohomology products in H(G) of general Schubert classes by “special Schubert classes”, i.e. the Chern classes of the dual of the tautological vector bundle of rank n on G. We discuss some related properties of reduced decompositions of “barred permutations” with even numbers of bars, and divided differences associated with the even orthogonal group SO(2m).
DOI : 10.4064/fm178-1-2
Mots-clés : study cohomology ring grassmannian isotropic n subspaces complex m dimensional vector space endowed nondegenerate orthogonal form here state prove formula giving schubert class decomposition cohomology products * general schubert classes special schubert classes chern classes dual tautological vector bundle rank discuss related properties reduced decompositions barred permutations even numbers bars divided differences associated even orthogonal group

Piotr Pragacz 1 ; Jan Ratajski 2

1 Institute of Mathematics Polish Academy of Sciences /Sniadeckich 8 P.O. Box 21 00-956 Warszawa 10, Poland
2 ING Nationale-Nederlanden Polska S.A. Ludna 2 00-406 Warszawa, Poland
@article{10_4064_fm178_1_2,
     author = {Piotr Pragacz and Jan Ratajski},
     title = {A {Pieri-type} formula for even orthogonal {Grassmannians}},
     journal = {Fundamenta Mathematicae},
     pages = {49--96},
     publisher = {mathdoc},
     volume = {178},
     number = {1},
     year = {2003},
     doi = {10.4064/fm178-1-2},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-1-2/}
}
TY  - JOUR
AU  - Piotr Pragacz
AU  - Jan Ratajski
TI  - A Pieri-type formula for even orthogonal Grassmannians
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 49
EP  - 96
VL  - 178
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-1-2/
DO  - 10.4064/fm178-1-2
LA  - en
ID  - 10_4064_fm178_1_2
ER  - 
%0 Journal Article
%A Piotr Pragacz
%A Jan Ratajski
%T A Pieri-type formula for even orthogonal Grassmannians
%J Fundamenta Mathematicae
%D 2003
%P 49-96
%V 178
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-1-2/
%R 10.4064/fm178-1-2
%G en
%F 10_4064_fm178_1_2
Piotr Pragacz; Jan Ratajski. A Pieri-type formula for even orthogonal Grassmannians. Fundamenta Mathematicae, Tome 178 (2003) no. 1, pp. 49-96. doi : 10.4064/fm178-1-2. https://geodesic-test.mathdoc.fr/articles/10.4064/fm178-1-2/

Cité par Sources :