Convex Corson compacta and Radon measures
Fundamenta Mathematicae, Tome 175 (2002) no. 2, pp. 143-154.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Assuming the continuum hypothesis, we show that (i) there is a compact convex subset L of Σ(Rω1), and a probability Radon measure on L which has no separable support; (ii) there is a Corson compact space K, and a convex weak-compact set M of Radon probability measures on K which has no Gδ-points.
DOI : 10.4064/fm175-2-4
Mots-clés : assuming continuum hypothesis there compact convex subset mit sigma mathbb omega probability radon measure which has separable support there corson compact space convex weak * compact set radon probability measures which has delta points

Grzegorz Plebanek 1

1 Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_fm175_2_4,
     author = {Grzegorz Plebanek},
     title = {Convex {Corson} compacta and {Radon} measures},
     journal = {Fundamenta Mathematicae},
     pages = {143--154},
     publisher = {mathdoc},
     volume = {175},
     number = {2},
     year = {2002},
     doi = {10.4064/fm175-2-4},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm175-2-4/}
}
TY  - JOUR
AU  - Grzegorz Plebanek
TI  - Convex Corson compacta and Radon measures
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 143
EP  - 154
VL  - 175
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm175-2-4/
DO  - 10.4064/fm175-2-4
LA  - en
ID  - 10_4064_fm175_2_4
ER  - 
%0 Journal Article
%A Grzegorz Plebanek
%T Convex Corson compacta and Radon measures
%J Fundamenta Mathematicae
%D 2002
%P 143-154
%V 175
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm175-2-4/
%R 10.4064/fm175-2-4
%G en
%F 10_4064_fm175_2_4
Grzegorz Plebanek. Convex Corson compacta and Radon measures. Fundamenta Mathematicae, Tome 175 (2002) no. 2, pp. 143-154. doi : 10.4064/fm175-2-4. https://geodesic-test.mathdoc.fr/articles/10.4064/fm175-2-4/

Cité par Sources :