Continua which a one-to-one continuous image of [0,∞)
Fundamenta Mathematicae, Tome 75 (1972) no. 2, pp. 123-133.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-75-2-123-133

Sam Nadler 1

1
@article{10_4064_fm_75_2_123_133,
     author = {Sam Nadler},
     title = {Continua which a one-to-one continuous image of [0,\ensuremath{\infty})},
     journal = {Fundamenta Mathematicae},
     pages = {123--133},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {1972},
     doi = {10.4064/fm-75-2-123-133},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm-75-2-123-133/}
}
TY  - JOUR
AU  - Sam Nadler
TI  - Continua which a one-to-one continuous image of [0,∞)
JO  - Fundamenta Mathematicae
PY  - 1972
SP  - 123
EP  - 133
VL  - 75
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm-75-2-123-133/
DO  - 10.4064/fm-75-2-123-133
LA  - en
ID  - 10_4064_fm_75_2_123_133
ER  - 
%0 Journal Article
%A Sam Nadler
%T Continua which a one-to-one continuous image of [0,∞)
%J Fundamenta Mathematicae
%D 1972
%P 123-133
%V 75
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm-75-2-123-133/
%R 10.4064/fm-75-2-123-133
%G en
%F 10_4064_fm_75_2_123_133
Sam Nadler. Continua which a one-to-one continuous image of [0,∞). Fundamenta Mathematicae, Tome 75 (1972) no. 2, pp. 123-133. doi : 10.4064/fm-75-2-123-133. https://geodesic-test.mathdoc.fr/articles/10.4064/fm-75-2-123-133/

Cité par Sources :