Vitali sets and Hamel bases that are Marczewski measurable
Fundamenta Mathematicae, Tome 166 (2000) no. 3, pp. 269-279.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give examples of a Vitali set and a Hamel basis which are Marczewski measurable and perfectly dense. The Vitali set example answers a question posed by Jack Brown. We also show there is a Marczewski null Hamel basis for the reals, although a Vitali set cannot be Marczewski null. The proof of the existence of a Marczewski null Hamel basis for the plane is easier than for the reals and we give it first. We show that there is no easy way to get a Marczewski null Hamel basis for the reals from one for the plane by showing that there is no one-to-one additive Borel map from the plane to the reals.
DOI : 10.4064/fm-166-3-269-279

Arnold W. Miller 1 ; Strashimir G. Popvassilev 1

1
@article{10_4064_fm_166_3_269_279,
     author = {Arnold W. Miller and Strashimir G. Popvassilev},
     title = {Vitali sets and {Hamel} bases that are {Marczewski} measurable},
     journal = {Fundamenta Mathematicae},
     pages = {269--279},
     publisher = {mathdoc},
     volume = {166},
     number = {3},
     year = {2000},
     doi = {10.4064/fm-166-3-269-279},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm-166-3-269-279/}
}
TY  - JOUR
AU  - Arnold W. Miller
AU  - Strashimir G. Popvassilev
TI  - Vitali sets and Hamel bases that are Marczewski measurable
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 269
EP  - 279
VL  - 166
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm-166-3-269-279/
DO  - 10.4064/fm-166-3-269-279
LA  - en
ID  - 10_4064_fm_166_3_269_279
ER  - 
%0 Journal Article
%A Arnold W. Miller
%A Strashimir G. Popvassilev
%T Vitali sets and Hamel bases that are Marczewski measurable
%J Fundamenta Mathematicae
%D 2000
%P 269-279
%V 166
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm-166-3-269-279/
%R 10.4064/fm-166-3-269-279
%G en
%F 10_4064_fm_166_3_269_279
Arnold W. Miller; Strashimir G. Popvassilev. Vitali sets and Hamel bases that are Marczewski measurable. Fundamenta Mathematicae, Tome 166 (2000) no. 3, pp. 269-279. doi : 10.4064/fm-166-3-269-279. https://geodesic-test.mathdoc.fr/articles/10.4064/fm-166-3-269-279/

Cité par Sources :