Universally Kuratowski–Ulam spaces
Fundamenta Mathematicae, Tome 165 (2000) no. 3, pp. 239-247.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce the notions of Kuratowski-Ulam pairs of topological spaces and universally Kuratowski-Ulam space. A pair (X,Y) of topological spaces is called a Kuratowski-Ulam pair if the Kuratowski-Ulam Theorem holds in X× Y. A space Y is called a universally Kuratowski-Ulam (uK-U) space if (X,Y) is a Kuratowski-Ulam pair for every space X. Obviously, every meager in itself space is uK-U. Moreover, it is known that every space with a countable π-basis is uK-U. We prove the following:  • every dyadic space (in fact, any continuous image of any product of separable metrizable spaces) is uK-U (so there are uK-U Baire spaces which do not have countable π-bases);  • every Baire uK-U space is ccc.
DOI : 10.4064/fm-165-3-239-247
Mots-clés : Baire space, dyadic space, quasi-dyadic space, Kuratowski-Ulam Theorem, Kuratowski-Ulam pair, universally Kuratowski-Ulam space

David Fremlin 1 ; Tomasz Natkaniec 1 ; Ireneusz Recław 1

1
@article{10_4064_fm_165_3_239_247,
     author = {David Fremlin and Tomasz Natkaniec and Ireneusz Rec{\l}aw},
     title = {Universally {Kuratowski{\textendash}Ulam} spaces},
     journal = {Fundamenta Mathematicae},
     pages = {239--247},
     publisher = {mathdoc},
     volume = {165},
     number = {3},
     year = {2000},
     doi = {10.4064/fm-165-3-239-247},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm-165-3-239-247/}
}
TY  - JOUR
AU  - David Fremlin
AU  - Tomasz Natkaniec
AU  - Ireneusz Recław
TI  - Universally Kuratowski–Ulam spaces
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 239
EP  - 247
VL  - 165
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm-165-3-239-247/
DO  - 10.4064/fm-165-3-239-247
LA  - en
ID  - 10_4064_fm_165_3_239_247
ER  - 
%0 Journal Article
%A David Fremlin
%A Tomasz Natkaniec
%A Ireneusz Recław
%T Universally Kuratowski–Ulam spaces
%J Fundamenta Mathematicae
%D 2000
%P 239-247
%V 165
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm-165-3-239-247/
%R 10.4064/fm-165-3-239-247
%G en
%F 10_4064_fm_165_3_239_247
David Fremlin; Tomasz Natkaniec; Ireneusz Recław. Universally Kuratowski–Ulam spaces. Fundamenta Mathematicae, Tome 165 (2000) no. 3, pp. 239-247. doi : 10.4064/fm-165-3-239-247. https://geodesic-test.mathdoc.fr/articles/10.4064/fm-165-3-239-247/
  • Bingham, Nicholas H.; Ostaszewski, Adam J. The Steinhaus-Weil property. I: Subcontinuity and amenability, Sarajevo Journal of Mathematics, Volume 16 (2020) no. 1, pp. 13-32 | Zbl:1463.22002
  • Burke, Maxim R. Approximation by entire functions in the construction of order-isomorphisms and large cross-sections, New trends in approximation theory. In memory of André Boivin. Proceedings of the conference, Toronto, Canada, July 25–29, 2016, Toronto: The Fields Institute for Research in the Mathematical Sciences; New York, NY: Springer, 2018, pp. 37-69 | DOI:10.1007/978-1-4939-7543-3_3 | Zbl:1417.30030
  • Bingham, N. H.; Ostaszewski, A. J. Category-measure duality: convexity, midpoint convexity and Berz sublinearity, Aequationes Mathematicae, Volume 91 (2017) no. 5, pp. 801-836 | DOI:10.1007/s00010-017-0486-7 | Zbl:1434.26002
  • Li, Rui; Zsilinszky, László More on products of Baire spaces, Topology and its Applications, Volume 230 (2017), pp. 35-44 | DOI:10.1016/j.topol.2017.08.003 | Zbl:1414.91075
  • Burke, M. R.; Macheras, N. D.; Strauss, W. Products of derived structures on topological spaces, Topology and its Applications, Volume 201 (2016), pp. 247-268 | DOI:10.1016/j.topol.2015.12.040 | Zbl:1347.28005
  • Burke, Maxim R. Approximation and interpolation by entire functions with restriction of the values of the derivatives, Topology and its Applications, Volume 213 (2016), pp. 24-49 | DOI:10.1016/j.topol.2016.08.005 | Zbl:1355.30034
  • Kalemba, Piotr; Kucharski, Andrzej Universally Kuratowski-Ulam spaces and open-open games, Annales Mathematicae Silesianae, Volume 29 (2015), pp. 85-92 | DOI:10.1515/amsil-2015-0007 | Zbl:1372.91019
  • Ostaszewski, A. J. Effros, Baire, Steinhaus and non-separability, Topology and its Applications, Volume 195 (2015), pp. 265-274 | DOI:10.1016/j.topol.2015.09.033 | Zbl:1347.54054
  • Ostaszewski, A. J. Beyond Lebesgue and Baire. III: Steinhaus' theorem and its descendants, Topology and its Applications, Volume 160 (2013) no. 10, pp. 1144-1154 | DOI:10.1016/j.topol.2013.04.005 | Zbl:1285.22005
  • Burke, M. R.; Macheras, N. D.; Musiał, K.; Strauss, W. Various products of category densities and liftings, Topology and its Applications, Volume 156 (2009) no. 7, pp. 1253-1270 | DOI:10.1016/j.topol.2008.12.002 | Zbl:1179.54044
  • Cao, Jiling; Tomita, A. H. Baire spaces, Tychonoff powers and the Vietoris topology, Proceedings of the American Mathematical Society, Volume 135 (2007) no. 5, pp. 1565-1573 | DOI:10.1090/s0002-9939-07-08855-7 | Zbl:1124.54014
  • Kucharski, Andrzej; Plewik, Szymon Game approach to universally Kuratowski-Ulam spaces, Topology and its Applications, Volume 154 (2007) no. 2, pp. 421-427 | DOI:10.1016/j.topol.2006.05.007 | Zbl:1172.54008
  • Burke, M. R.; Macheras, N. D.; Musiał, K.; Strauss, W. Category product densities and liftings, Topology and its Applications, Volume 153 (2006) no. 7, pp. 1164-1191 | DOI:10.1016/j.topol.2004.12.008 | Zbl:1087.54013

Cité par 13 documents. Sources : zbMATH