On the generalized Massey–Rolfsen invariant for link maps
Fundamenta Mathematicae, Tome 165 (2000) no. 1, pp. 1-15.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For K=K1...Ks and a link map f:Km let K=ijKi×Kj, define a map f:KSm1 by f(x,y)=(fxfy)/|fxfy| and a (generalized) Massey-Rolfsen invariant α(f)πm1(K) to be the homotopy class of f. We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps f:Km up to link concordance to πm1(K). If K1,...,Ks are closed highly homologically connected manifolds of dimension p1,...,ps (in particular, homology spheres), then πm1(K)ijπpi+pjm+1S.
DOI : 10.4064/fm-165-1-1-15
Mots-clés : deleted product, Massey-Rolfsen invariant, link maps, link homotopy, stable homotopy group, double suspension, codimension two, highly connected manifolds

A. Skopenkov 1

1
@article{10_4064_fm_165_1_1_15,
     author = {A. Skopenkov},
     title = {On the generalized {Massey{\textendash}Rolfsen} invariant for link maps},
     journal = {Fundamenta Mathematicae},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {165},
     number = {1},
     year = {2000},
     doi = {10.4064/fm-165-1-1-15},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm-165-1-1-15/}
}
TY  - JOUR
AU  - A. Skopenkov
TI  - On the generalized Massey–Rolfsen invariant for link maps
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 1
EP  - 15
VL  - 165
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm-165-1-1-15/
DO  - 10.4064/fm-165-1-1-15
LA  - en
ID  - 10_4064_fm_165_1_1_15
ER  - 
%0 Journal Article
%A A. Skopenkov
%T On the generalized Massey–Rolfsen invariant for link maps
%J Fundamenta Mathematicae
%D 2000
%P 1-15
%V 165
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm-165-1-1-15/
%R 10.4064/fm-165-1-1-15
%G en
%F 10_4064_fm_165_1_1_15
A. Skopenkov. On the generalized Massey–Rolfsen invariant for link maps. Fundamenta Mathematicae, Tome 165 (2000) no. 1, pp. 1-15. doi : 10.4064/fm-165-1-1-15. https://geodesic-test.mathdoc.fr/articles/10.4064/fm-165-1-1-15/

Cité par Sources :