Topological spaces admitting a unique fractal structure
Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 257-268.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Each homeomorphism from the n-dimensional Sierpiński gasket into itself is a similarity map with respect to the usual metrization. Moreover, the topology of this space determines a kind of Haar measure and a canonical metric. We study spaces with similar properties. It turns out that in many cases, "fractal structure" is not a metric but a topological phenomenon.
DOI : 10.4064/fm-141-3-257-268

Christoph Bandt 1 ; Teklehaimanot Retta 2

1 Fachbereich Mathematik Ernst-Moritz-Arndt-Universität D-O-2200 Greifswald, Germany
2 Mathematics Department Addis Ababa University P.O. BOX 1176, Addis Ababa, Ethiopia
@article{10_4064_fm_141_3_257_268,
     author = {Christoph Bandt and Teklehaimanot Retta},
     title = {Topological spaces admitting a unique fractal structure},
     journal = {Fundamenta Mathematicae},
     pages = {257--268},
     publisher = {mathdoc},
     volume = {141},
     number = {3},
     year = {1992},
     doi = {10.4064/fm-141-3-257-268},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-257-268/}
}
TY  - JOUR
AU  - Christoph Bandt
AU  - Teklehaimanot Retta
TI  - Topological spaces admitting a unique fractal structure
JO  - Fundamenta Mathematicae
PY  - 1992
SP  - 257
EP  - 268
VL  - 141
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-257-268/
DO  - 10.4064/fm-141-3-257-268
LA  - en
ID  - 10_4064_fm_141_3_257_268
ER  - 
%0 Journal Article
%A Christoph Bandt
%A Teklehaimanot Retta
%T Topological spaces admitting a unique fractal structure
%J Fundamenta Mathematicae
%D 1992
%P 257-268
%V 141
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-257-268/
%R 10.4064/fm-141-3-257-268
%G en
%F 10_4064_fm_141_3_257_268
Christoph Bandt; Teklehaimanot Retta. Topological spaces admitting a unique fractal structure. Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 257-268. doi : 10.4064/fm-141-3-257-268. https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-257-268/

Cité par Sources :