Size levels for arcs
Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 243-255.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.
DOI : 10.4064/fm-141-3-243-255
Mots-clés : hyperspace, cyclic elements, absolute retract

Sam B. Nadler, Jr. 1 ; Thelma West 2

1 Department of Mathematics West Virginia University Morgantown, West Virginia 26505 U.S.A.
2 Department of Mathematics University of Southwestern Louisiana Lafayette, Louisiana 70504 U.S.A.
@article{10_4064_fm_141_3_243_255,
     author = {Sam B.  Nadler, Jr. and Thelma West},
     title = {Size levels for arcs},
     journal = {Fundamenta Mathematicae},
     pages = {243--255},
     publisher = {mathdoc},
     volume = {141},
     number = {3},
     year = {1992},
     doi = {10.4064/fm-141-3-243-255},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-243-255/}
}
TY  - JOUR
AU  - Sam B.  Nadler, Jr.
AU  - Thelma West
TI  - Size levels for arcs
JO  - Fundamenta Mathematicae
PY  - 1992
SP  - 243
EP  - 255
VL  - 141
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-243-255/
DO  - 10.4064/fm-141-3-243-255
LA  - en
ID  - 10_4064_fm_141_3_243_255
ER  - 
%0 Journal Article
%A Sam B.  Nadler, Jr.
%A Thelma West
%T Size levels for arcs
%J Fundamenta Mathematicae
%D 1992
%P 243-255
%V 141
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-243-255/
%R 10.4064/fm-141-3-243-255
%G en
%F 10_4064_fm_141_3_243_255
Sam B.  Nadler, Jr.; Thelma West. Size levels for arcs. Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 243-255. doi : 10.4064/fm-141-3-243-255. https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-243-255/

Cité par Sources :