Algebras of Borel measurable functions
Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 229-242.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.
DOI : 10.4064/fm-141-3-229-242

Michał Morayne 1

1 Institute of Mathematics Uniwersity of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_fm_141_3_229_242,
     author = {Micha{\l} Morayne},
     title = {Algebras of {Borel} measurable functions},
     journal = {Fundamenta Mathematicae},
     pages = {229--242},
     publisher = {mathdoc},
     volume = {141},
     number = {3},
     year = {1992},
     doi = {10.4064/fm-141-3-229-242},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-229-242/}
}
TY  - JOUR
AU  - Michał Morayne
TI  - Algebras of Borel measurable functions
JO  - Fundamenta Mathematicae
PY  - 1992
SP  - 229
EP  - 242
VL  - 141
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-229-242/
DO  - 10.4064/fm-141-3-229-242
LA  - en
ID  - 10_4064_fm_141_3_229_242
ER  - 
%0 Journal Article
%A Michał Morayne
%T Algebras of Borel measurable functions
%J Fundamenta Mathematicae
%D 1992
%P 229-242
%V 141
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-229-242/
%R 10.4064/fm-141-3-229-242
%G en
%F 10_4064_fm_141_3_229_242
Michał Morayne. Algebras of Borel measurable functions. Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 229-242. doi : 10.4064/fm-141-3-229-242. https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-229-242/

Cité par Sources :