On soluble groups of automorphisms of nonorientable Klein surfaces
Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 215-227.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q ≥ 2 has at most 24(q-1) elements and that this bound is sharp for infinitely many values of q.
DOI : 10.4064/fm-141-3-215-227
Mots-clés : Riemann surfaces, Klein surfaces, automorphism groups, soluble groups

G. Gromadzki 1

1
@article{10_4064_fm_141_3_215_227,
     author = {G. Gromadzki},
     title = {On soluble groups of automorphisms of nonorientable {Klein} surfaces},
     journal = {Fundamenta Mathematicae},
     pages = {215--227},
     publisher = {mathdoc},
     volume = {141},
     number = {3},
     year = {1992},
     doi = {10.4064/fm-141-3-215-227},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-215-227/}
}
TY  - JOUR
AU  - G. Gromadzki
TI  - On soluble groups of automorphisms of nonorientable Klein surfaces
JO  - Fundamenta Mathematicae
PY  - 1992
SP  - 215
EP  - 227
VL  - 141
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-215-227/
DO  - 10.4064/fm-141-3-215-227
LA  - en
ID  - 10_4064_fm_141_3_215_227
ER  - 
%0 Journal Article
%A G. Gromadzki
%T On soluble groups of automorphisms of nonorientable Klein surfaces
%J Fundamenta Mathematicae
%D 1992
%P 215-227
%V 141
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-215-227/
%R 10.4064/fm-141-3-215-227
%G en
%F 10_4064_fm_141_3_215_227
G. Gromadzki. On soluble groups of automorphisms of nonorientable Klein surfaces. Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 215-227. doi : 10.4064/fm-141-3-215-227. https://geodesic-test.mathdoc.fr/articles/10.4064/fm-141-3-215-227/

Cité par Sources :