Spaces of multipliers and their preduals for the order multiplication on [0,1]. II
Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 267-273.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider I=[0,1] as a compact topological semigroup with max multiplication and usual topology, and let C(I),Lp(I),1p, be the associated algebras. The aim of this paper is to study the spaces HomC(I)(Lr(I),Lp(I)), r>p, and their preduals.
DOI : 10.4064/cm99-2-10
Mots-clés : consider compact topological semigroup max multiplication usual topology leq leq infty associated algebras paper study spaces mathop hom nolimits their preduals

Savita Bhatnagar 1

1 Department of Mathematics Panjab University Chandigarh 160014, India
@article{10_4064_cm99_2_10,
     author = {Savita Bhatnagar},
     title = {Spaces of multipliers and their preduals
 for the order multiplication on $[0,1]$. {II}},
     journal = {Colloquium Mathematicum},
     pages = {267--273},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2004},
     doi = {10.4064/cm99-2-10},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm99-2-10/}
}
TY  - JOUR
AU  - Savita Bhatnagar
TI  - Spaces of multipliers and their preduals
 for the order multiplication on $[0,1]$. II
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 267
EP  - 273
VL  - 99
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm99-2-10/
DO  - 10.4064/cm99-2-10
LA  - en
ID  - 10_4064_cm99_2_10
ER  - 
%0 Journal Article
%A Savita Bhatnagar
%T Spaces of multipliers and their preduals
 for the order multiplication on $[0,1]$. II
%J Colloquium Mathematicum
%D 2004
%P 267-273
%V 99
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm99-2-10/
%R 10.4064/cm99-2-10
%G en
%F 10_4064_cm99_2_10
Savita Bhatnagar. Spaces of multipliers and their preduals
 for the order multiplication on $[0,1]$. II. Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 267-273. doi : 10.4064/cm99-2-10. https://geodesic-test.mathdoc.fr/articles/10.4064/cm99-2-10/

Cité par Sources :