On free subgroups of units in quaternion algebras II
Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 29-32.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let AQ be any subring. We extend our earlier results on unit groups of the standard quaternion algebra H(A) to units of certain rings of generalized quaternions H(A,a,b)=(a,bA), where a,bA. Next we show that there is an algebra embedding of the ring H(A,a,b) into the algebra of standard Cayley numbers over A. Using this embedding we answer a question asked in the first part of this paper.
DOI : 10.4064/cm97-1-4
Mots-clés : subseteq mathbb subring extend earlier results unit groups standard quaternion algebra units certain rings generalized quaternions a b right where there algebra embedding ring algebra standard cayley numbers using embedding answer question asked first part paper

Jan Krempa 1

1 Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland
@article{10_4064_cm97_1_4,
     author = {Jan Krempa},
     title = {On free subgroups of units in quaternion algebras {II}},
     journal = {Colloquium Mathematicum},
     pages = {29--32},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2003},
     doi = {10.4064/cm97-1-4},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm97-1-4/}
}
TY  - JOUR
AU  - Jan Krempa
TI  - On free subgroups of units in quaternion algebras II
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 29
EP  - 32
VL  - 97
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm97-1-4/
DO  - 10.4064/cm97-1-4
LA  - en
ID  - 10_4064_cm97_1_4
ER  - 
%0 Journal Article
%A Jan Krempa
%T On free subgroups of units in quaternion algebras II
%J Colloquium Mathematicum
%D 2003
%P 29-32
%V 97
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm97-1-4/
%R 10.4064/cm97-1-4
%G en
%F 10_4064_cm97_1_4
Jan Krempa. On free subgroups of units in quaternion algebras II. Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 29-32. doi : 10.4064/cm97-1-4. https://geodesic-test.mathdoc.fr/articles/10.4064/cm97-1-4/

Cité par Sources :