Additive functions modulo a countable subgroup of R
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 117-122.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We solve the mod G Cauchy functional equation $$ f(x+y)=f(x)+f(y)\pmod G, $$ where G is a countable subgroup of R and f:RR is Borel measurable. We show that the only solutions are functions linear mod G.
DOI : 10.4064/cm95-1-9
Mots-clés : solve mod cauchy functional equation pmod where countable subgroup mathbb mathbb mathbb borel measurable only solutions functions linear mod

Nikos Frantzikinakis 1

1 331 McAllister Building State College, PA 16801, U.S.A.
@article{10_4064_cm95_1_9,
     author = {Nikos Frantzikinakis},
     title = {Additive functions
 modulo a countable subgroup of ${\Bbb R}$},
     journal = {Colloquium Mathematicum},
     pages = {117--122},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2003},
     doi = {10.4064/cm95-1-9},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-9/}
}
TY  - JOUR
AU  - Nikos Frantzikinakis
TI  - Additive functions
 modulo a countable subgroup of ${\Bbb R}$
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 117
EP  - 122
VL  - 95
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-9/
DO  - 10.4064/cm95-1-9
LA  - en
ID  - 10_4064_cm95_1_9
ER  - 
%0 Journal Article
%A Nikos Frantzikinakis
%T Additive functions
 modulo a countable subgroup of ${\Bbb R}$
%J Colloquium Mathematicum
%D 2003
%P 117-122
%V 95
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-9/
%R 10.4064/cm95-1-9
%G en
%F 10_4064_cm95_1_9
Nikos Frantzikinakis. Additive functions
 modulo a countable subgroup of ${\Bbb R}$. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 117-122. doi : 10.4064/cm95-1-9. https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-9/

Cité par Sources :