Ranks for baire multifunctions
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 63-77.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Various ordinal ranks for Baire-1 real-valued functions, which have been used in the literature, are adapted to provide ranks for Baire-1 multifunctions. A new rank is also introduced which, roughly speaking, gives an estimate of how far a Baire-1 multifunction is from being upper semicontinuous.
DOI : 10.4064/cm95-1-6
Mots-clés : various ordinal ranks baire real valued functions which have literature adapted provide ranks baire multifunctions rank introduced which roughly speaking gives estimate far baire multifunction being upper semicontinuous

Pandelis Dodos 1

1 Department of Mathematics Faculty of Applied Sciences National Technical University of Athens Athens, Greece
@article{10_4064_cm95_1_6,
     author = {Pandelis Dodos},
     title = {Ranks for baire multifunctions},
     journal = {Colloquium Mathematicum},
     pages = {63--77},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2003},
     doi = {10.4064/cm95-1-6},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-6/}
}
TY  - JOUR
AU  - Pandelis Dodos
TI  - Ranks for baire multifunctions
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 63
EP  - 77
VL  - 95
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-6/
DO  - 10.4064/cm95-1-6
LA  - en
ID  - 10_4064_cm95_1_6
ER  - 
%0 Journal Article
%A Pandelis Dodos
%T Ranks for baire multifunctions
%J Colloquium Mathematicum
%D 2003
%P 63-77
%V 95
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-6/
%R 10.4064/cm95-1-6
%G en
%F 10_4064_cm95_1_6
Pandelis Dodos. Ranks for baire multifunctions. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 63-77. doi : 10.4064/cm95-1-6. https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-6/

Cité par Sources :