A note on rare maximal functions
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 49-51.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A necessary and sufficient condition is given on the basis of a rare maximal function Ml such that MlfL1([0,1]) implies fLlogL([0,1]).
DOI : 10.4064/cm95-1-4
Mots-clés : necessary sufficient condition given basis rare maximal function implies log

Paul Alton Hagelstein 1

1 Department of Mathematics Princeton University Princeton, NJ 08540, U.S.A.
@article{10_4064_cm95_1_4,
     author = {Paul Alton Hagelstein},
     title = {A note on rare maximal functions},
     journal = {Colloquium Mathematicum},
     pages = {49--51},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2003},
     doi = {10.4064/cm95-1-4},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-4/}
}
TY  - JOUR
AU  - Paul Alton Hagelstein
TI  - A note on rare maximal functions
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 49
EP  - 51
VL  - 95
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-4/
DO  - 10.4064/cm95-1-4
LA  - en
ID  - 10_4064_cm95_1_4
ER  - 
%0 Journal Article
%A Paul Alton Hagelstein
%T A note on rare maximal functions
%J Colloquium Mathematicum
%D 2003
%P 49-51
%V 95
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-4/
%R 10.4064/cm95-1-4
%G en
%F 10_4064_cm95_1_4
Paul Alton Hagelstein. A note on rare maximal functions. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 49-51. doi : 10.4064/cm95-1-4. https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-4/

Cité par Sources :