The natural linear operators TTT(r)
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 37-47.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For natural numbers n3 and r a complete description of all natural bilinear operators T×MfnT(0,0)T(0,0)T(r) is presented. Next for natural numbers r and n3 a full classification of all natural linear operators T|MfnTT(r) is obtained.
DOI : 10.4064/cm95-1-3
Mots-clés : natural numbers geq complete description natural bilinear operators * times cal rightsquigarrow presented natural numbers geq full classification natural linear operators * cal rightsquigarrow obtained

J. Kurek 1 ; W. M. Mikulski 2

1 Institute of Mathematics Maria Curie-Skłodowska University Pl. Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland
2 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_cm95_1_3,
     author = {J. Kurek and W. M. Mikulski},
     title = {The natural linear operators $T^*\rightsquigarrow TT^{(r)}$},
     journal = {Colloquium Mathematicum},
     pages = {37--47},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2003},
     doi = {10.4064/cm95-1-3},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-3/}
}
TY  - JOUR
AU  - J. Kurek
AU  - W. M. Mikulski
TI  - The natural linear operators $T^*\rightsquigarrow TT^{(r)}$
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 37
EP  - 47
VL  - 95
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-3/
DO  - 10.4064/cm95-1-3
LA  - en
ID  - 10_4064_cm95_1_3
ER  - 
%0 Journal Article
%A J. Kurek
%A W. M. Mikulski
%T The natural linear operators $T^*\rightsquigarrow TT^{(r)}$
%J Colloquium Mathematicum
%D 2003
%P 37-47
%V 95
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-3/
%R 10.4064/cm95-1-3
%G en
%F 10_4064_cm95_1_3
J. Kurek; W. M. Mikulski. The natural linear operators $T^*\rightsquigarrow TT^{(r)}$. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 37-47. doi : 10.4064/cm95-1-3. https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-3/

Cité par Sources :