A bifurcation theory for some nonlinear elliptic equations
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 139-151.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We deal with the problem $$\cases {-{\mit\Delta} u= f(x,u)+\lambda g(x,u) in Ω,\cr u_{|\partial {\mit\Omega}}=0,\cr} \tag*{(Pλ)} $$ where ΩRn is a bounded domain, λR, and f,g:Ω×RR are two Carathéodory functions with f(x,0)=g(x,0)=0. Under suitable assumptions, we prove that there exists λ>0 such that, for each λ(0,λ), problem (Pλ) admits a non-zero, non-negative strong solution uλp2W2,p(Ω) such that limλ0+uλW2,p(Ω)=0 for all p2. Moreover, the function λIλ(uλ) is negative and decreasing in ]0,λ[, where Iλ is the energy functional related to (Pλ).
DOI : 10.4064/cm95-1-12
Mots-clés : problem cases mit delta lambda mit omega partial mit omega tag* lambda where mit omega subset mathbb bounded domain lambda mathbb mit omega times mathbb mathbb carath odory functions under suitable assumptions prove there exists lambda * each lambda lambda * problem lambda admits non zero non negative strong solution lambda bigcap geq mit omega lim lambda lambda mit omega geq moreover function lambda mapsto lambda lambda negative decreasing lambda * where lambda energy functional related lambda

Biagio Ricceri 1

1 Department of Mathematics University of Catania Viale A. Doria 6 95125 Catania, Italy
@article{10_4064_cm95_1_12,
     author = {Biagio Ricceri},
     title = {A bifurcation theory
 for some nonlinear elliptic equations},
     journal = {Colloquium Mathematicum},
     pages = {139--151},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2003},
     doi = {10.4064/cm95-1-12},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-12/}
}
TY  - JOUR
AU  - Biagio Ricceri
TI  - A bifurcation theory
 for some nonlinear elliptic equations
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 139
EP  - 151
VL  - 95
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-12/
DO  - 10.4064/cm95-1-12
LA  - en
ID  - 10_4064_cm95_1_12
ER  - 
%0 Journal Article
%A Biagio Ricceri
%T A bifurcation theory
 for some nonlinear elliptic equations
%J Colloquium Mathematicum
%D 2003
%P 139-151
%V 95
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-12/
%R 10.4064/cm95-1-12
%G en
%F 10_4064_cm95_1_12
Biagio Ricceri. A bifurcation theory
 for some nonlinear elliptic equations. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 139-151. doi : 10.4064/cm95-1-12. https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-12/

Cité par Sources :