Cohen–Macaulayness of multiplication rings and modules
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 133-138.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let R be a commutative multiplication ring and let N be a non-zero finitely generated multiplication R-module. We characterize certain prime submodules of N. Also, we show that N is Cohen–Macaulay whenever R is Noetherian.
DOI : 10.4064/cm95-1-11
Mots-clés : commutative multiplication ring non zero finitely generated multiplication r module characterize certain prime submodules cohen macaulay whenever noetherian

R. Naghipour 1 ; H. Zakeri 2 ; N. Zamani 3

1 Department of Mathematics Tabriz University Tabriz, Iran
2 Institute of Mathematics University for Teacher Education 599 Taleghani Avenue Tehran 15614, Iran
3 School of Sciences Tarbiat Modarres University P.O. Box 14155-4838 Tehran, Iran
@article{10_4064_cm95_1_11,
     author = {R. Naghipour and H. Zakeri and N. Zamani},
     title = {Cohen{\textendash}Macaulayness of
 multiplication rings and modules},
     journal = {Colloquium Mathematicum},
     pages = {133--138},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2003},
     doi = {10.4064/cm95-1-11},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-11/}
}
TY  - JOUR
AU  - R. Naghipour
AU  - H. Zakeri
AU  - N. Zamani
TI  - Cohen–Macaulayness of
 multiplication rings and modules
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 133
EP  - 138
VL  - 95
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-11/
DO  - 10.4064/cm95-1-11
LA  - en
ID  - 10_4064_cm95_1_11
ER  - 
%0 Journal Article
%A R. Naghipour
%A H. Zakeri
%A N. Zamani
%T Cohen–Macaulayness of
 multiplication rings and modules
%J Colloquium Mathematicum
%D 2003
%P 133-138
%V 95
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-11/
%R 10.4064/cm95-1-11
%G en
%F 10_4064_cm95_1_11
R. Naghipour; H. Zakeri; N. Zamani. Cohen–Macaulayness of
 multiplication rings and modules. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 133-138. doi : 10.4064/cm95-1-11. https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-11/

Cité par Sources :