Minimal nonhomogeneous continua
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 123-132.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that there are (1) nonhomogeneous metric continua that admit minimal noninvertible maps but have the fixed point property for homeomorphisms, and (2) nonhomogeneous metric continua that admit both minimal noninvertible maps and minimal homeomorphisms. The former continua are constructed as quotient spaces of the torus or as subsets of the torus, the latter are constructed as subsets of the torus.
DOI : 10.4064/cm95-1-10
Mots-clés : there nonhomogeneous metric continua admit minimal noninvertible maps have fixed point property homeomorphisms nonhomogeneous metric continua admit minimal noninvertible maps minimal homeomorphisms former continua constructed quotient spaces torus subsets torus latter constructed subsets torus

Henk Bruin 1 ; Sergiǐ Kolyada 2 ; L'ubomír Snoha 3

1 Department of Mathematics University of Groningen P.O. Box 800 9700 AV Groningen, The Netherlands
2 Institute of Mathematics Ukrainian Academy of Sciences Tereshchenkivs'ka 3 252601 Kiev, Ukraine
3 Department of Mathematics Faculty of Natural Sciences Matej Bel University Tajovského 40 974 01 Banská Bystrica, Slovakia
@article{10_4064_cm95_1_10,
     author = {Henk Bruin and Sergiǐ Kolyada and L'ubom{\'\i}r Snoha},
     title = {Minimal nonhomogeneous continua},
     journal = {Colloquium Mathematicum},
     pages = {123--132},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2003},
     doi = {10.4064/cm95-1-10},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-10/}
}
TY  - JOUR
AU  - Henk Bruin
AU  - Sergiǐ Kolyada
AU  - L'ubomír Snoha
TI  - Minimal nonhomogeneous continua
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 123
EP  - 132
VL  - 95
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-10/
DO  - 10.4064/cm95-1-10
LA  - en
ID  - 10_4064_cm95_1_10
ER  - 
%0 Journal Article
%A Henk Bruin
%A Sergiǐ Kolyada
%A L'ubomír Snoha
%T Minimal nonhomogeneous continua
%J Colloquium Mathematicum
%D 2003
%P 123-132
%V 95
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-10/
%R 10.4064/cm95-1-10
%G en
%F 10_4064_cm95_1_10
Henk Bruin; Sergiǐ Kolyada; L'ubomír Snoha. Minimal nonhomogeneous continua. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 123-132. doi : 10.4064/cm95-1-10. https://geodesic-test.mathdoc.fr/articles/10.4064/cm95-1-10/

Cité par Sources :