Absence of global solutions to a class of nonlinear parabolic inequalities
Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 195-220.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the absence of nonnegative global solutions to parabolic inequalities of the type ut(Δ)β/2uV(x)u+h(x,t)up, where (Δ)β/2, 0β2, is the β/2 fractional power of the Laplacian. We give a sufficient condition which implies that the only global solution is trivial if p>1 is small. Among other properties, we derive a necessary condition for the existence of local and global nonnegative solutions to the above problem for the function V satisfying V+(x)a|x|b, where a0, b>0, p>1 and V+(x):=max{V(x),0}. We show that the existence of solutions depends on the behavior at infinity of both initial data and h. In addition to our main results, we also discuss the nonexistence of solutions for some degenerate parabolic inequalities like utΔum+up and utΔpu+h(x,t)up. The approach is based upon a duality argument combined with an appropriate choice of a test function. First we obtain an a priori estimate and then we use a scaling argument to prove our nonexistence results.
DOI : 10.4064/cm94-2-3
Mots-clés : study absence nonnegative global solutions parabolic inequalities type geq mit delta beta where mit delta beta beta leq beta fractional power laplacian sufficient condition which implies only global solution trivial small among other properties derive necessary condition existence local global nonnegative solutions above problem function satisfying sim b where geq max existence solutions depends behavior infinity initial addition main results discuss nonexistence solutions degenerate parabolic inequalities geq mit delta geq mit delta u approach based duality argument combined appropriate choice test function first obtain priori estimate scaling argument prove nonexistence results

M. Guedda 1

1 LAMFA, CNRS UMR 6140 Faculté de Mathématiques et d'Informatique Université de Picardie Jules Verne 33, rue Saint-Leu 80039 Amiens, France
@article{10_4064_cm94_2_3,
     author = {M. Guedda},
     title = {Absence of global solutions to a class
 of nonlinear parabolic inequalities},
     journal = {Colloquium Mathematicum},
     pages = {195--220},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {2002},
     doi = {10.4064/cm94-2-3},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm94-2-3/}
}
TY  - JOUR
AU  - M. Guedda
TI  - Absence of global solutions to a class
 of nonlinear parabolic inequalities
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 195
EP  - 220
VL  - 94
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm94-2-3/
DO  - 10.4064/cm94-2-3
LA  - en
ID  - 10_4064_cm94_2_3
ER  - 
%0 Journal Article
%A M. Guedda
%T Absence of global solutions to a class
 of nonlinear parabolic inequalities
%J Colloquium Mathematicum
%D 2002
%P 195-220
%V 94
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm94-2-3/
%R 10.4064/cm94-2-3
%G en
%F 10_4064_cm94_2_3
M. Guedda. Absence of global solutions to a class
 of nonlinear parabolic inequalities. Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 195-220. doi : 10.4064/cm94-2-3. https://geodesic-test.mathdoc.fr/articles/10.4064/cm94-2-3/

Cité par Sources :